Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds
Charite Univ Med Berlin, Julius Wolff Inst, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Berlin Brandenburg Ctr, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Sch Regenerat Therapies, Augustenburger Pl 1, D-13353 Berlin, Germany.;Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany..
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany..
Matricel GmbH, Kaiserstr 100, D-52134 Herzogenrath, Germany..
Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany.;Tech Univ Darmstadt, Alarich Weiss Str 10, D-64287 Darmstadt, Germany..
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 103, artikel-id 109760Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the design of macroporous biomaterial scaffolds, attention is payed predominantly to the readily accessible macroscopic mechanical properties rather than to the mechanical properties experienced by the cells adhering to the material. However, the direct cell mechanical environment has been shown to be of special relevance for biological processes such as proliferation, differentiation and extracellular matrix formation both in vitro and in vivo. In this study we investigated how individual architectural features of highly aligned macroporous collagen scaffolds contribute to its mechanical properties on the macroscopic vs. the microscopic scale. Scaffolds were produced by controlled freezing and freeze-drying, a method frequently used for manufacturing of macroporous biomaterials. The individual architectural features of the biomaterial were carefully characterized to develop a finite element model (FE-model) that finally provided insights in the relation between the biomaterial's mechanical properties on the macro-scale and the properties on the micro-scale, as experienced by adhering cells. FE-models were validated by experimental characterization of the scaffolds, both on the macroscopic and the microscopic level, using mechanical compression testing and atomic force microscopy. As a result, a so-called cell-effective stiffness of these non-trivial scaffold architectures could be predicted for the first time. A linear dependency between the macroscopic scaffold stiffness and the cell-effective stiffness was found, with the latter being consistently higher by a factor of 6.4 +/- 0.6. The relevance of the cell-effective stiffness in controlling progenitor cell differentiation was confirmed in vitro. The obtained information about the cell-effective stiffness is of particular relevance for the early stages of tissue regeneration, when the cells first populate and interact with the biomaterial. Beyond the specific biomaterial investigated here, the introduced method is transferable to other complex biomaterial architectures. Design-optimization in 3D macroporous scaffolds that are based on a deeper understanding of the mechanical environment provided to the cells will help to enhance biomaterial-based tissue regeneration approaches.

Ort, förlag, år, upplaga, sidor
ELSEVIER , 2019. Vol. 103, artikel-id 109760
Nyckelord [en]
Cell-effective stiffness, Mechanobiology, Mechanical characterization, Scaffold architecture, FEM, Mesenchymal stromal cell differentiation
Nationell ämneskategori
Materialkemi
Identifikatorer
URN: urn:nbn:se:kth:diva-257795DOI: 10.1016/j.msec.2019.109760ISI: 000480664900028PubMedID: 31349443Scopus ID: 2-s2.0-85066011841OAI: oai:DiVA.org:kth-257795DiVA, id: diva2:1351036
Anmärkning

QC 20190913

Tillgänglig från: 2019-09-13 Skapad: 2019-09-13 Senast uppdaterad: 2019-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Hellwig, Johannes

Sök vidare i DiVA

Av författaren/redaktören
Hellwig, Johannes
Av organisationen
Fiber- och polymerteknologi
I samma tidskrift
Materials science & engineering. C, biomimetic materials, sensors and systems
Materialkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 4 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf