Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fusing fine-tuned deep features for skin lesion classification
Vise andre og tillknytning
2019 (engelsk)Inngår i: Computerized Medical Imaging and Graphics, ISSN 0895-6111, E-ISSN 1879-0771, Vol. 71, s. 19-29Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Malignant melanoma is one of the most aggressive forms of skin cancer. Early detection is important as it significantly improves survival rates. Consequently, accurate discrimination of malignant skin lesions from benign lesions such as seborrheic keratoses or benign nevi is crucial, while accurate computerised classification of skin lesion images is of great interest to support diagnosis. In this paper, we propose a fully automatic computerised method to classify skin lesions from dermoscopic images. Our approach is based on a novel ensemble scheme for convolutional neural networks (CNNs) that combines intra-architecture and inter-architecture network fusion. The proposed method consists of multiple sets of CNNs of different architecture that represent different feature abstraction levels. Each set of CNNs consists of a number of pre-trained networks that have identical architecture but are fine-tuned on dermoscopic skin lesion images with different settings. The deep features of each network were used to train different support vector machine classifiers. Finally, the average prediction probability classification vectors from different sets are fused to provide the final prediction. Evaluated on the 600 test images of the ISIC 2017 skin lesion classification challenge, the proposed algorithm yields an area under receiver operating characteristic curve of 87.3% for melanoma classification and an area under receiver operating characteristic curve of 95.5% for seborrheic keratosis classification, outperforming the top-ranked methods of the challenge while being simpler compared to them. The obtained results convincingly demonstrate our proposed approach to represent a reliable and robust method for feature extraction, model fusion and classification of dermoscopic skin lesion images.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 71, s. 19-29
Emneord [en]
Skin cancer; Melanoma; Dermoscopy; Medical image analysis; Deep learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-259367DOI: 10.1016/j.compmedimag.2018.10.007ISI: 000458594700003PubMedID: 30458354Scopus ID: 2-s2.0-85056631170OAI: oai:DiVA.org:kth-259367DiVA, id: diva2:1351187
Merknad

QC 20190913

Tilgjengelig fra: 2019-09-13 Laget: 2019-09-13 Sist oppdatert: 2019-09-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Wang, Chunliang

Søk i DiVA

Av forfatter/redaktør
Wang, Chunliang
Av organisasjonen
I samme tidsskrift
Computerized Medical Imaging and Graphics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf