Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detection, Tracking and 3D Modeling of Objects with Sparse RGB-D SLAM and Interactive Perception
KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.ORCID-id: 0000-0003-3252-715X
Wayfair, Boston, MA 02116, USA.
Mitsubishi Electric Research Labs (MERL), Cambridge, MA 02139, USA.
2019 (engelsk)Inngår i: IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present an interactive perception system that enables an autonomous agent to deliberately interact with its environment and produce 3D object models. Our system verifies object hypotheses through interaction and simultaneously maintains 3D SLAM maps for each rigidly moving object hypothesis in the scene. We rely on depth-based segmentation and a multigroup registration scheme to classify features into various object maps. Our main contribution lies in the employment of a novel segment classification scheme that allows the system to handle incorrect object hypotheses, common in cluttered environments due to touching objects or occlusion. We start with a single map and initiate further object maps based on the outcome of depth segment classification. For each existing map, we select a segment to interact with and execute a manipulation primitive with the goal of disturbing it. If the resulting set of depth segments has at least one segment that did not follow the dominant motion pattern of its respective map, we split the map, thus yielding updated object hypotheses. We show qualitative results with a Fetch manipulator and objects of various shapes, which showcase the viability of the method for identifying and modelling multiple objects through repeated interactions.

sted, utgiver, år, opplag, sider
2019.
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-259617OAI: oai:DiVA.org:kth-259617DiVA, id: diva2:1352526
Konferanse
IEEE-RAS International Conference on Humanoid Robots
Merknad

QC 20190930

Tilgjengelig fra: 2019-09-19 Laget: 2019-09-19 Sist oppdatert: 2019-09-30bibliografisk kontrollert

Open Access i DiVA

fulltext(4574 kB)24 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4574 kBChecksum SHA-512
cc0c3b10001ce4c6cc0b6b168e220ce36e49b53e176ef5523f703c7102784c891d1f8e9e237fcf846bb750d0eab9dbfc1c523223cced5317c97df10a60a7077b
Type fulltextMimetype application/pdf

Andre lenker

Conference webpage

Personposter BETA

Almeida, Diogo

Søk i DiVA

Av forfatter/redaktør
Almeida, Diogo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 24 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 856 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf