Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal stratification and mixing in a Nordic BWR pressure suppression pool
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-5794-2651
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-0683-9136
2019 (English)In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 132, p. 442-450Article in journal (Refereed) Published
Abstract [en]

The pressure suppression pool of a Nordic Boiling Water Reactor (BWR) serves as a heat sink to condense steam from the primary coolant system in normal operation and accident conditions. Thermal stratification can develop in the pool when buoyancy forces overcome the momentum created by the steam injection. In this case, hot condensate forms a hot layer at the top of the pool, reducing the pool cooling and condensation capacity compared to mixed conditions. The Effective Heat Source and Effective Momentum Source (EHS/EMS) models were previously proposed to model the large-scale pool behavior during a steam injection. In this work, we use CFD code of ANSYS Fluent with the EHS/EMS models to simulate the transient behavior of a Nordic BWR pool during a steam injection through spargers. First, a validation against a Nordic BWR pool test with complete mixing is presented. Prediction of the pool behavior for other possible injection scenarios show that stratification can occur at prototypic steam injection conditions, and that the hot layer temperature above the injection point can be non-uniform. In cases with significant steam condensation inside the sparger pipes, the 95 degrees C pool temperature limit for the Emergency Core Cooling System (ECCS) pumps was reached similar to 7 h after the beginning of the blowdown.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2019. Vol. 132, p. 442-450
Keywords [en]
Sparger, Relief vales, Steam injection, Condensation, CFD, Effective momentum
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-259408DOI: 10.1016/j.anucene.2019.04.054ISI: 000482247600042Scopus ID: 2-s2.0-85065229097OAI: oai:DiVA.org:kth-259408DiVA, id: diva2:1354356
Note

QC 20190925

Available from: 2019-09-25 Created: 2019-09-25 Last updated: 2019-09-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Gallego-Marcos, IgnacioGrishchenko, DmitryKudinov, Pavel

Search in DiVA

By author/editor
Gallego-Marcos, IgnacioGrishchenko, DmitryKudinov, Pavel
By organisation
Nuclear Engineering
In the same journal
Annals of Nuclear Energy
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf