CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Long Term Memory in Conversational Robots
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This study discusses an implementation of a long term memory in the robot Furhat. The idea was to find a way to prevent identical and very similar questions from being asked several times and to store the information of which questions have already been asked in a document database. The project encompasses tf-idf, as well as a small-scale test with Word2Vec, to find a vector representation of all questions from Furhat’s database and then clustering these questions with the k-means method. The tests resulted in high scores on all the evaluation metrics used, which is promising for implementation into the actual Furhat robot, as well as further research on similar implementations of long term memory functions in chatbots.

Abstract [sv]

I denna rapport behandlas implementeringen av ett långtidsminne i roboten Furhat. Idén bakom detta minne var att hindra roboten från att vara repetitiv och ställa allt för likartade eller identiska frågor till en konversationspartner. Projektet inkluderar användandet av tf-idf, samt inledande försök med word2vec i skapandet av vektorrepresentationer av dialogsystemets frågor, samt klustring av dessa representationer med algoritmen k-means. De genomförda testerna renderade goda resultat, vilket är lovande för implementering av en liknande mekanism i Furhats dialogsystem samt för framtida forskning inom långtidsminnesfunktionalitet i chatbots i allmänhet.

Place, publisher, year, edition, pages
2019. , p. 12
Series
TRITA-EECS-EX ; 2019:429
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-260316OAI: oai:DiVA.org:kth-260316DiVA, id: diva2:1355184
Examiners
Available from: 2019-10-09 Created: 2019-09-27 Last updated: 2019-10-09Bibliographically approved

Open Access in DiVA

fulltext(2399 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 2399 kBChecksum SHA-512
2d98622cce063b17f7d817d9775b25b981e3f84c7384764697c94249d53956dc4d3faa4eeabc2a240fbff2dbb1405370b98268c479b58d8276e1fb3ba8f1f94e
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf