Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AVRA: Automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks
Karolinska Inst, Dept Neurobiol Care Sci & Soc, Div Clin Geriatr, Stockholm, Sweden..ORCID-id: 0000-0002-6100-991X
Karolinska Inst, Dept Neurobiol Care Sci & Soc, Div Clin Geriatr, Stockholm, Sweden..
Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden.;Karolinska Univ Hosp, Dept Radiol, Stockholm, Sweden..
Karolinska Inst, Dept Neurobiol Care Sci & Soc, Div Clin Geriatr, Stockholm, Sweden..
Vise andre og tillknytning
2019 (engelsk)Inngår i: NeuroImage: Clinical, ISSN 0353-8842, E-ISSN 2213-1582, Vol. 23, artikkel-id UNSP 101872Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Quantifying the degree of atrophy is done clinically by neuroradiologists following established visual rating scales. For these assessments to be reliable the rater requires substantial training and experience, and even then the rating agreement between two radiologists is not perfect. We have developed a model we call AVRA (Automatic Visual Ratings of Atrophy) based on machine learning methods and trained on 2350 visual ratings made by an experienced neuroradiologist. It provides fast and automatic ratings for Scheltens' scale of medial temporal atrophy (MTA), the frontal subscale of Pasquier's Global Cortical Atrophy (GCA-F) scale, and Koedam's scale of Posterior Atrophy (PA). We demonstrate substantial inter-rater agreement between AVRA's and a neuroradiologist ratings with Cohen's weighted kappa values of kappa(w) = 0.74/0.72 (MTA left/right), kappa(w) = 0.62 (GCA-F) and kappa(w) = 0.74 (PA). We conclude that automatic visual ratings of atrophy can potentially have great scientific value, and aim to present AVRA as a freely available toolbox.

sted, utgiver, år, opplag, sider
ELSEVIER SCI LTD , 2019. Vol. 23, artikkel-id UNSP 101872
Emneord [en]
Atrophy, Visual ratings, Machine learning, MRI, Neuroimaging, Radiology
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-261348DOI: 10.1016/j.nicl.2019.101872ISI: 000485804400063PubMedID: 31154242Scopus ID: 2-s2.0-85066258366OAI: oai:DiVA.org:kth-261348DiVA, id: diva2:1357827
Merknad

QC 20191004

Tilgjengelig fra: 2019-10-04 Laget: 2019-10-04 Sist oppdatert: 2019-10-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Wang, Chunliang

Søk i DiVA

Av forfatter/redaktør
Mårtensson, GustavWang, ChunliangWestman, Eric
Av organisasjonen
I samme tidsskrift
NeuroImage: Clinical

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 40 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf