CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bevakning av sociala medier för marknadsanalys
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Social Media Monitoring for Market Analysis (English)
Abstract [en]

Målet med studien ämnar undersöka till vilken grad det går att använda modeller inom maskininlärning, i syfte att identifiera marknadstrender och ersätta nuvarande marknadsanalysmetoder. Data utvinns genom Information Extraction från svenska blogginlägg och förbehandlas med TFIDF-standarden. Vidare sker klustring av data med algoritmen kmeans. Resultatet antyder på viss potential, men att ytterligare studier för implementering av sentimentalanalys och vidare utveckling av förbehandlingsmetoder krävs för att uppnå målet.

Abstract [en]

The aim of the study is to research the extent to which models in machine learning can be used, in order to identify market trends and replace current market analysis methods. Data is extracted using Information Extraction from Swedish blog posts and pre-processed with the TF-IDF standard. Furthermore, clustering of data is performed with the algorithm kmeans. The result indicates potential in monitoring of social media, but that further studies for implementation of sentimental analysis and further development of pre-processing methods are required to achieve the goal.

Place, publisher, year, edition, pages
2019. , p. 10
Series
TRITA-EECS-EX ; 2019:291
Keywords [en]
Market research, Machine Learning, Clustering, Kmeans, Social Media
Keywords [sv]
Marknadsundersökning, Maskininlärning, Klustring, Kmeans, Social Media
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-262219OAI: oai:DiVA.org:kth-262219DiVA, id: diva2:1361036
Examiners
Available from: 2019-11-07 Created: 2019-10-15 Last updated: 2019-11-07Bibliographically approved

Open Access in DiVA

fulltext(738 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 738 kBChecksum SHA-512
c30954799f9c75f1e8c78e81d4ea603789da471a191163db7bee63838d535715fb722ded366b219084393597b42fdb804f4ca4420c389034592c2c076b647640
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf