Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal energy storage in combined cycle power plants: Comparing finite volume to finite element methods
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-6982-2879
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2019 (English)In: E3S Web of Conferences: SUPEHR19 Sustainable PolyEnergy generation and Harvesting, EDP Sciences, 2019, Vol. 113Conference paper, Published paper (Refereed)
Abstract [en]

The research in thermal energy storage (TES) systems has a long track record. However, there are several technical challenges that need to be overcome, to become omnipresent and reach their full potential. These include performance, physical size, weight and dynamic response. In many cases, it is also necessary to be able to achieve the foregoing at greater and greater scale, in terms of power and energy. One of the applications in which these challenges prevail is in the integration of a thermal energy storage with the gas turbine (GT) compressor inlet conditioning system in a combined cycle power plant. The system is intended to provide either GT cooling or heating, based on the operational strategy of the plant. As a contribution to tackle the preceding, this article describes a series of 3-dimensional (3D) numerical simulations, employing different Computational Fluid Dynamics (CFD) methods, to study the transient effects of inlet temperature and flow rate variation on the performance of an encapsulated TES with phase change materials (PCM). A sensitivity analysis is performed where the heat transfer fluid (HTF) temperature varies from -7°C to 20°C depending on the operating mode of the TES (charging or discharging). The flow rate ranges from 50% to 200% of the nominal inflow rate. Results show that all examined cases lead to instant thermal power above 100kWth. Moreover, increasing the flow rate leads to faster solidification and melting. The increment in each process depends on the driving temperature difference between the encapsulated PCM and the HTF inlet temperature. Lastly, the effect of the inlet temperature has a larger effect as compared to the mass flow rate on the efficiency of the heat transfer of the system.

Place, publisher, year, edition, pages
EDP Sciences, 2019. Vol. 113
Series
E3S Web of Conferences, ISSN 2555-0403 ; 113
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-262519DOI: 10.1051/e3sconf/201911301001Scopus ID: 2-s2.0-85071850599OAI: oai:DiVA.org:kth-262519DiVA, id: diva2:1362292
Conference
2019 SUstainable PolyEnergy Generation and HaRvesting, SUPEHR 2019; Savona; Italy; 4 September 2019 through 6 September 2019
Note

QC 20191018

Available from: 2019-10-18 Created: 2019-10-18 Last updated: 2019-10-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Martin, Guillaume

Search in DiVA

By author/editor
Chiu, Justin Ning WeiMartin, Guillaume
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf