Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Task adapted reconstruction for inverse problems
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). Elekta.ORCID-id: 0000-0001-9928-3407
Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden ; Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Bergen, Norway.
Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation.

Nyckelord [en]
Inverse problems, image reconstruction, tomography, deep learning, feature reconstruction, segmentation, classification, regularization
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Tillämpad matematik och beräkningsmatematik, Numerisk analys
Identifikatorer
URN: urn:nbn:se:kth:diva-262725OAI: oai:DiVA.org:kth-262725DiVA, id: diva2:1362340
Anmärkning

QC 20191021

Tillgänglig från: 2019-10-18 Skapad: 2019-10-18 Senast uppdaterad: 2019-10-21Bibliografiskt granskad
Ingår i avhandling
1. Data-driven Methods in Inverse Problems
Öppna denna publikation i ny flik eller fönster >>Data-driven Methods in Inverse Problems
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this thesis on data-driven methods in inverse problems we introduce several new methods to solve inverse problems using recent advancements in machine learning and specifically deep learning. The main goal has been to develop practically applicable methods, scalable to medical applications and with the ability to handle all the complexities associated with them.

In total, the thesis contains six papers. Some of them are focused on more theoretical questions such as characterizing the optimal solutions of reconstruction schemes or extending current methods to new domains, while others have focused on practical applicability. A significant portion of the papers also aim to bringing knowledge from the machine learning community into the imaging community, with considerable effort spent on translating many of the concepts. The papers have been published in a range of venues: machine learning, medical imaging and inverse problems.

The first two papers contribute to a class of methods now called learned iterative reconstruction where we introduce two ways of combining classical model driven reconstruction methods with deep neural networks. The next two papers look forward, aiming to address the question of "what do we want?" by proposing two very different but novel loss functions for training neural networks in inverse problems. The final papers dwelve into the statistical side, one gives a generalization of a class of deep generative models to Banach spaces while the next introduces two ways in which such methods can be used to perform Bayesian inversion at scale.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 196
Serie
TRITA-SCI-FOU ; 2019;49
Nyckelord
Inverse Problems, Machine Learning, Tomography
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-262727 (URN)978-91-7873-334-7 (ISBN)
Disputation
2019-10-31, F3, Lindstedtsvägen26, KTH, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Tillgänglig från: 2019-10-21 Skapad: 2019-10-18 Senast uppdaterad: 2019-10-21Bibliografiskt granskad

Open Access i DiVA

fulltext(1511 kB)5 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1511 kBChecksumma SHA-512
d9ea9b02a9dfb1c9fee55d71ac3ca606bfc9596c40d9b52e1d52ab2a262d177608b32732efcac5c2c3af43f0ce8fd3beef0cdf2a18cb07977e14b68d0d4ce8dd
Typ fulltextMimetyp application/pdf

Övriga länkar

arXiv preprint

Personposter BETA

Adler, JonasÖktem, Ozan

Sök vidare i DiVA

Av författaren/redaktören
Adler, JonasÖktem, Ozan
Av organisationen
Matematik (Avd.)
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 5 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf