Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
TALS: A framework for text analysis, fine-grained annotation, localisation and semantic segmentation
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Proceedings - International Computer Software and Applications Conference, IEEE Computer Society, 2019, Vol. 8754470, s. 201-206Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

With around 2.77 billion users using online social media platforms nowadays, it is becoming more attractive for business retailers to reach and to connect to more potential clients through social media. However, providing more effective recommendations to grab clients’ attention requires a deep understanding of users’ interests. Given the enormous amounts of text and images that users share in social media, deep learning approaches play a major role in performing semantic analysis of text and images. Moreover, object localisation and pixel-by-pixel semantic segmentation image analysis neural architectures provide an enhanced level of information. However, to train such architectures in an end-to-end manner, detailed datasets with specific meta-data are required. In our paper, we present a complete framework that can be used to tag images in a hierarchical fashion, and to perform object localisation and semantic segmentation. In addition to this, we show the value of using neural word embeddings in providing additional semantic details to annotators to guide them in annotating images in the system. Our framework is designed to be a fully functional solution capable of providing fine-grained annotations, essential localisation and segmentation services while keeping the core architecture simple and extensible. We also provide a fine-grained labelled fashion dataset that can be a rich source for research purposes.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2019. Vol. 8754470, s. 201-206
Serie
Proceedings - International Computer Software and Applications Conference, ISSN 0730-3157
Emneord [en]
Annotations, Dataset, Deep learning, Fine-grained, Localisation, Natural language processing, Semantic segmentation, Word embeddings
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-262582DOI: 10.1109/COMPSAC.2019.10207Scopus ID: 2-s2.0-85072655269ISBN: 9781728126074 (tryckt)OAI: oai:DiVA.org:kth-262582DiVA, id: diva2:1363188
Konferanse
43rd IEEE Annual Computer Software and Applications Conference, COMPSAC 2019; Milwaukee; United States; 15 July 2019 through 19 July 2019
Merknad

QC 20191022

Tilgjengelig fra: 2019-10-22 Laget: 2019-10-22 Sist oppdatert: 2019-10-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Jaradat, ShathaDokoohaki, NimaWara, UmmalHammar, KimMatskin, Mihhail

Søk i DiVA

Av forfatter/redaktør
Jaradat, ShathaDokoohaki, NimaWara, UmmalGoswami, MalluHammar, KimMatskin, Mihhail
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 28 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf