Bio-based multifunctional fatty acid methyl esters as reactive diluents in coil coatings
2019 (English)In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 136, article id 105277Article in journal (Refereed) Published
Abstract [en]
The increased environmental awareness has driven academia and industry to utilize environmentally benign sources. An industrially available process that is effective in the coatings industry is the coil-coating process where sheet steel can be pre-coated. During this process volatile organic compounds (VOCs) are generated and incinerated for energy recovery. One way to minimize VOCs is to use a reactive diluent i.e. a molecule that acts both as a solvent as well as chemically react into the final coating upon curing. Fatty acid methyl esters obtained from renewable resources such as vegetable oils are suitable candidates as reactive diluents. In this paper epoxidized fatty acid methyl esters (e-FAMEs) obtained from epoxidized linseed oil where compared with fatty acid methyl esters (FAMEs) obtained from rapeseed oil as reactive diluents in coil-coating formulations. Coil-coating formulations were followed by real-time Fourier transform infrared spectroscopy (RT-FTIR) in order to evaluate the e-FAMEs or the FAMEs reactivity in the coating system. In addition, coil-coating formulation containing e-FAME or FAME where cured in a pilot scale simulated coil-coating process. Moreover, thermal properties of the final coatings were evaluated by differential scanning calorimetry (DSC).
Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 136, article id 105277
Keywords [en]
Coil-coatings, Epoxidized fatty acid methyl esters, Protective coatings, Renewable resources, Vegetable oil, Chemical industry, Curing, Differential scanning calorimetry, Esters, Fourier transform infrared spectroscopy, Oilseeds, Vegetable oils, Volatile organic compounds, Coil coatings, Environmental awareness, Environmentally benign, Epoxidized linseed oil, Fatty acid methyl ester, Fatty acid methyl esters (FAMEs), Multifunctional fatty acid, Renewable resource, Fatty acids
National Category
Polymer Technologies Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-263516DOI: 10.1016/j.porgcoat.2019.105277ISI: 000490030200079Scopus ID: 2-s2.0-85070793022OAI: oai:DiVA.org:kth-263516DiVA, id: diva2:1374292
Note
QC 20191130
2019-11-292019-11-292022-06-26Bibliographically approved