kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden.ORCID iD: 0000-0002-2073-7005
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.ORCID iD: 0000-0002-7674-0262
SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.ORCID iD: 0000-0001-5454-3316
Show others and affiliations
2019 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 4, no 19, p. 18257-18267Article in journal (Refereed) Published
Abstract [en]

The development of fully natural wheat gluten foams showing rapid and high uptake of water, sheep blood, and saline solution, while maintaining high mechanical stability in the swollen state, is presented. Genipin was added as a natural and polar cross-linker to increase the polarity of the protein chains, whereas cellulose nanofibers (CNFs) were added as a reinforcement/stiffener of the foams, alone or in combination with the genipin. The presence of only genipin resulted in a foam that absorbed up to 25 g of water per gram of foam and a more than 15 g uptake in only 8 min. In contrast, with CNF alone, it was not possible to maintain the mechanical stability of the foam during the water uptake and the protein foam disintegrated. The combination of CNF and genipin yielded a material with the best mechanical stability of the tested samples. In the latter case, the foam could be compressed repeatedly more than 80% without displaying any structural damage. The results revealed that a strong network had formed between the wheat gluten matrix, genipin, and cellulose in the foam structure. A unique feature of the absorbent/foam, in contrast to commercial superabsorbents, was that it was able to rapidly absorb nonpolar liquids (here, n-heptane) due to the open-cell structure. The capillary-driven absorption due to the open-cell structure, the high liquid absorption in the cell walls, and the mechanical properties (both in dry and swollen states) of these natural foams make them interesting as a sustainable replacement for a range of petroleum-based foam materials, including absorbent hygiene products such as sanitary pads.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2019. Vol. 4, no 19, p. 18257-18267
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-264874DOI: 10.1021/acsomega.9b02271ISI: 000495089100030PubMedID: 31720526Scopus ID: 2-s2.0-85074201832OAI: oai:DiVA.org:kth-264874DiVA, id: diva2:1380025
Note

QC 20191218

Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Sustainable Biobased Protein Superabsorbents from Agricultural Co-Products
Open this publication in new window or tab >>Sustainable Biobased Protein Superabsorbents from Agricultural Co-Products
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The preparation of sustainable protein superabsorbents from agricultural industry side-streams is reported. Wheat gluten (WG), a co-product from the ethanol/starch industry, was processed into foams with sponge-like behavior and high liquid uptake. The materials were obtained by phase-separation of aqueous WG dispersions followed by ambient drying, or by lyophilization. The use of a natural and non-toxic cross-linker (genipin) resulted in foams with high water swelling properties (~18 g/g in 10 min). The rapid swelling may be of use in bio-based foams in e.g., sanitary pads.

As an alternative, potato protein concentrate (PPC, side-stream from the starch industry), was functionalized and prepared as particles. The liquid swelling capacity was compared after acylation with five different agents. It is shown that the PPC can be acylated to replicate the chemistry of synthetic superabsorbent polymers (SAP), showing water swelling capacity >10 g/g. The acylation (using EDTAD) of WG suspensions resulted in protein particles with water and saline uptake of 22 and 5 g/g, respectively. Limited network stability was however observed when acylating WG in low-protein suspensions. This was addressed by mixing the acylated protein with genipin, which provided a stable protein network. The process gave functionalized particles with swelling capacity ~40 g/g and ~80 % retention of swelling in centrifuge retention tests.

The extrusion of WG showed that porous WG with water uptake of 500 % can be produced. Further, the scalability of PPC production was pilot-tested by functionalizing potato fruit juice (PFJ), containing the potato protein in its soluble state before the industrial drying used to obtain PPC. This resulted in water swelling capacities >10 g/g, which was comparable to the PPC-functionalized materials. The results pave the way for future optimization of high-throughput production techniques using protein sources in mass production of sustainable protein-based SAPs.

Abstract [sv]

Produktion av hållbara protein-superabsorbenter från jordbruksindustrins sidoströmmar genomfördes i denna avhandling. Vetegluten (WG), en samprodukt från etanol/stärkelseindustrin, bearbetades till skum med högt vätskeupptag. Porösa WG-material erhölls genom både fasseparation av vatten/WG-dispersioner med efterföljande torkning samt genom vakuum-torkning. Användning av en naturlig och giftfri tvärbindare (genipin) ledde till WG-skum som tog upp ~18 g vatten / g skum på 10 min. Denna egenskap gör de biobaserade skummen intressanta för t.ex.  hygienkuddar (sanitary pads).

Potatisproteinkoncentrat (PPC), en sidoström från stärkelseindustrin, funktionaliserades och svällningsförmågan undersöktes efter acylering med fem olika substanser. Det modifierade PPC efterliknade kemin hos syntetiska superabsorberande polymerer (SAP) och erhöll att vattenupptag >10 g/g. Acylering av WG i suspensionsform resulterade i proteinpartiklar med vatten- och saltlösnings-upptag på 22 respektive 5 g/g. Den begränsade stabiliteten som erhölls vid acylering av WG i utspädd form löstes genom att tillsätta genipin. Förfarandet resulterade i partiklar med en svällningskapacitet på ~40 g/g och en retention på ~80 % i centrifugeringstestet.

Uppskalningtester i form av extruderat WG material visade att den porösa strukturen hos de extruderade WG-materialen gav vattenupptag på 500 %. Uppskalningsmöjligheter för PPC absorbenter testades genom att funktionalisera potatisfruktsaft (PFJ), det vill säga PPC innan anrikning, och det visade sig att denna hade en vattenupptagningsförmåga på >10 g/g, vilket är jämförbart med det PPC-funktionaliserade materialet (>20 g/g). Dessa resultat banar väg för framtida optimering av produktionstekniker, vilka möjliggör för en hög produktionshastighet och massproduktion av hållbara proteinbaserade SAP: er.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 86
Series
TRITA-CBH-FOU ; 2020:50
Series
Acta Universitatis Agriculturae Sueciae, ISSN 1652-6880 ; 2020:53
Keywords
proteins, circularity, superabsorbents, sustainability, acylation, extrusion
National Category
Polymer Technologies Textile, Rubber and Polymeric Materials Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-281719 (URN)978-91-7760-624-6 (ISBN)978-91-7760-625-3 (ISBN)
Public defence
2020-10-16, https://kth-se.zoom.us/webinar/register/WN_ackva19qQH6WFT8Cq-vQAA, 09:00 (English)
Opponent
Supervisors
Projects
Product Quality
Funder
Vinnova, 2015-03506
Note

This thesis is a result of a double-degree between KTH and SLU.

Available from: 2020-09-24 Created: 2020-09-23 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Capezza, Antonio JoseWu, QiongOlsson, RichardHedenqvist, Mikael S.

Search in DiVA

By author/editor
Capezza, Antonio JoseWu, QiongOlsson, RichardHedenqvist, Mikael S.
By organisation
Polymeric MaterialsBiocomposites
In the same journal
ACS Omega
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 260 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf