kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Population structure of drug-resistant Mycobacterium tuberculosis in Central Asia
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-7612-0522
Show others and affiliations
2019 (English)In: BMC Infectious Diseases, E-ISSN 1471-2334, Vol. 19, no 1, article id 908Article in journal (Refereed) Published
Abstract [en]

Background: Drug-resistant tuberculosis (TB) is a major public health concern threathing the success of TB control efforts, and this is particularily problematic in Central Asia. Here, we present the first analysis of the population structure of Mycobacterium tuberculosis complex isolates in the Central Asian republics Uzbekistan, Tajikistan, and Kyrgyzstan. Methods: The study set consisted of 607 isolates with 235 from Uzbekistan, 206 from Tajikistan, and 166 from Kyrgyzstan. 24-loci MIRU-VNTR (Mycobacterial Interspersed Repetitive Units - Variable Number of Tandem Repeats) typing and spoligotyping were combined for genotyping. In addition, phenotypic drug suceptibility was performed. Results: The population structure mainly comprises strains of the Beijing lineage (411/607). 349 of the 411 Beijing isolates formed clusters, compared to only 33 of the 196 isolates from other clades. Beijing 94-32 (n = 145) and 100-32 (n = 70) formed the largest clusters. Beijing isolates were more frequently multidrug-resistant, pre-extensively resistant (pre-XDR)- or XDR-TB than other genotypes. Conclusions: Beijing clusters 94-32 and 100-32 are the dominant MTB genotypes in Central Asia. The relative size of 100-32 compared to previous studies in Kazakhstan and its unequal geographic distribution support the hypothesis of its more recent emergence in Central Asia. The data also demonstrate that clonal spread of resistant TB strains, particularly of the Beijing lineage, is a root of the so far uncontroled MDR-TB epidemic in Central Asia.

Place, publisher, year, edition, pages
BMC , 2019. Vol. 19, no 1, article id 908
Keywords [en]
Molecular typing, MIRU, MDR-TB, Beijing, Cluster
National Category
Microbiology in the medical area
Identifiers
URN: urn:nbn:se:kth:diva-265745DOI: 10.1186/s12879-019-4480-7ISI: 000500564800003PubMedID: 31664926Scopus ID: 2-s2.0-85074327799OAI: oai:DiVA.org:kth-265745DiVA, id: diva2:1383972
Funder
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Note

QC 20200109

Available from: 2020-01-09 Created: 2020-01-09 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Engström, Anna

Search in DiVA

By author/editor
Engström, Anna
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLab
In the same journal
BMC Infectious Diseases
Microbiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf