Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessment of image quality in abdominal computed tomography: Effect of model-based iterative reconstruction, multi-planar reconstruction and slice thickness on potential dose reduction
Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Dept Radiol, Dept Med & Hlth Sci, S-58185 Linkoping, Sweden..
Linkoping Univ, Dept Med Phys, Dept Med & Hlth Sci, S-58185 Linkoping, Sweden..
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.ORCID-id: 0000-0002-7750-1917
Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Dept Radiol, Dept Med & Hlth Sci, S-58185 Linkoping, Sweden..
Vise andre og tillknytning
2020 (engelsk)Inngår i: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 122, artikkel-id 108703Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose: To determine the effect of tube load, model-based iterative reconstruction (MBIR) strength and slice thickness in abdominal CT using visual comparison of multi-planar reconstruction images. Method: Five image criteria were assessed independently by four radiologists on two data sets at 42- and 98-mAs tube loads for 25 patients examined on a 192-slice dual-source CT scanner. Effect of tube load, MBIR strength, slice thickness and potential dose reduction was estimated with Visual Grading Regression (VGR). Objective image quality was determined by measuring noise (SD), contrast-to-noise (CNR) ratio and noise-power spectra (NPS). Results: Comparing 42- and 98-mAs tube loads, improved image quality was observed as a strong effect of log tube load regardless of MBIR strength (p < 0.001). Comparing strength 5 to 3, better image quality was obtained for two criteria (p < 0.01), but inferior for liver parenchyma and overall image quality. Image quality was significantly better for slice thicknesses of 2mm and 3mm compared to 1mm, with potential dose reductions between 24%-41%. As expected, with decrease in slice thickness and algorithm strength, the noise power and SD (HU-values) increased, while the CNR decreased. Conclusion: Increasing slice thickness from 1 mm to 2 mm or 3 mm allows for a possible dose reduction. MBIR strength 5 shows improved image quality for three out of five criteria for 1 mm slice thickness. Increasing MBIR strength from 3 to 5 has diverse effects on image quality. Our findings do not support a general recommendation to replace strength 3 by strength 5 in clinical abdominal CT protocols. However, strength 5 may be used in task-based protocols.

sted, utgiver, år, opplag, sider
Elsevier Ireland Ltd , 2020. Vol. 122, artikkel-id 108703
Emneord [en]
Computed tomography, Abdomen, Iterative reconstruction, Dose, Slice thickness, Multi-planar reconstruction (MPR)
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-266743DOI: 10.1016/j.ejrad.2019.108703ISI: 000505150900002PubMedID: 31810641Scopus ID: 2-s2.0-85076199636OAI: oai:DiVA.org:kth-266743DiVA, id: diva2:1386301
Merknad

QC 20200117

Tilgjengelig fra: 2020-01-17 Laget: 2020-01-17 Sist oppdatert: 2020-01-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Smedby, Örjan

Søk i DiVA

Av forfatter/redaktør
Smedby, Örjan
Av organisasjonen
I samme tidsskrift
European Journal of Radiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf