Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In situ encapsulation of Nile red or Doxorubicin during RAFT-mediated emulsion polymerization via polymerization-induced self-assembly for biomedical applications
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-9572-6888
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0001-8887-9141
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0003-0578-4003
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
Show others and affiliations
2020 (English)In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935Article in journal (Refereed) In press
Place, publisher, year, edition, pages
2020.
National Category
Polymer Technologies Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-267222Scopus ID: 2-s2.0-85079443030OAI: oai:DiVA.org:kth-267222DiVA, id: diva2:1391451
Note

QCR 20200205

Available from: 2020-02-04 Created: 2020-02-04 Last updated: 2020-05-25Bibliographically approved
In thesis
1. Design of Functional Polymeric Nanoparticles for Biomedical Applications
Open this publication in new window or tab >>Design of Functional Polymeric Nanoparticles for Biomedical Applications
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Most of the devastating diseases such as cancer are relatively incurable and have high risks of relapse. Therefore, persistent endeavors have been devoted to improve patient survival rate and quality of life. Drug delivery systems (DDS) based on polymeric nanoparticles (PNPs) have been demonstrated to increase the therapeutic index (efficacy/toxicity ratio) of chemotherapeutic agents. This thesis focuses on designing non-toxic and multifunctional biodegradable PNPs from preformed polymers for bioimaging and drug delivery applications. Multifunctional poly(lactide-co-glycolide) (PLGA) NPs were simultaneously loaded with imaging probes, superparamagnetic iron oxide nanoparticles (SPION) and manganese-doped zinc sulfide (Mn:ZnS) quantum dots (QDs), as well as an anti-cancer drug, busulfan (Bu), during the particle formation. The NPs were utilized to enhance magnetic resonance imaging (MRI) in vivo and controlled drug release in vitro (Paper I). Poly(ε-caprolactone) (PCL) was copolymerized with poly(ethylene glycol) (PEG) to achieve stealth property for in vivo purposes. Aluminum phthalocyanine, a photosensitizer and an anti-cancer drug, was encapsulated in the PEG-b-PCL NPs for photodynamic therapy during particle formation. The biodistribution of the prepared nanophotosensitizer showed targeted drug delivery toward lungs, liver and spleen as monitored by the intrinsic fluorescence of the photosensitizer (Paper II). The PEG-b-PCL NPs were loaded with SPION or surface functionalized with VivoTag 680XL fluorochrome and utilized for in vivo multimodal imaging, MRI and fluorescence imaging (Paper III). This thesis also presents stable and engineered PNPs obtained using reversible addition-fragmentation chain transfer (RAFT) mediated polymerization-induced self-assembly (PISA). Hydrophobic agents, nile red (NR) dye or doxorubicin (DOX) drug, were encapsulated in poly(N-[3- (dimethylamino) propyl] methacrylamide)-b-poly(methyl methacrylate) (PDMAPMA-b-PMMA) NPs via one-pot RAFT-mediated PISA in water (Paper IV). The PDMAPMA-b-PMMA NPs showed very monodisperse spheres and core-shell nanostructures. Stable and non-toxic poly(acrylic acid)-b-poly(butyl acrylate) (PAA-b-PBA) NPs, synthesized via RAFTmediated PISA in water, were surface engineered by allyl-functional groups prior to bio-conjugation for targeted drug delivery (Paper V). The engineered NPs retained their colloidal stability and size post-allyl functionalization. DOX was efficiently (90 %) encapsulated in the PAA-bPBA NPs during NPs formation. A controlled release pattern of DOX from PAA-b-PBA NPs was observed over 7 days.

Abstract [sv]

Aggressiva sjukdomar, såsom cancer, har ofta stor risk för återfall och är i många fall obotliga. Det gör att det finns en stark strävan efter att förbättra patienters livskvalitet och överlevnad. Nanopartikel-baserade system för att frisätta läkemedelbaserade på polymerer (PNPs) har visats vara lovande för att öka det terapeutiska indexet (effektivitet/toxicitet) för kemoterapeutiska medel. Denna avhandling fokuserar på att framställa icke-toxiska och multifunktionella biologiskt nedbrytbara PNPs för avbildning och läkemedelsadministrationsapplikationer från polymerer. Parallellt med partikelbildningen laddades multifunktionella poly(laktid-sam-glykolid) (PLGA) NPs med superparamagnetiska nanopartiklar av järnoxid (SPION) och kvantprickar (QDs) av mangandopad zinksulfid (Mn:ZnS), såväl som med ett anti-cancerläkemedel, busulfan (Bu). Dessa NPs användes sedan för att förbättra kontrasten i MRI in vivo och för kontrollerad läkemedelsfrisättning in vitro (Paper I). Polykaprolakton (PCL) sampolymeriserades med polyetylenglykol (PEG) för att uppnå partiklar med stealth-egenskaper. För fotodynamisk terapi inkapslades en fotosensibilisator av aluminiumftalocyanin som också är ett anticancerläkemedel i PEG-b-PCL NPs samtidigt som partiklarna bildades. Analys av dessas biodistribution med fluorescensmätningar visade en målsökande förmåga mot lunga, lever och mjälte, (Paper II). PEG-b-PCL NPs laddades också med SPION och ytfunktionaliserades med VivoTag 680XL fluorokrom och utvärderades med in vivo multimodal avbildning, MRI och fluorescensavbildning (Paper III). Denna avhandling presenterar också stabila och skräddarsydda PNPs syntetiserade med hjälp av reversibel addition-fragmenteringkedjeöverföring (RAFT) medierad polymerisation med inducerad självorganisation (PISA). Hydrofoba substanser, nile red (NR) färgämne eller doxorubicin (DOX) läkemedel, inkapslades i poly(N-[3- (dimetylamino)propyl] metakrylamid)-b-poly(metylmetakrylat) (PDMAPMA-b-PMMA) NPs via one-pot RAFT-medierad PISA (Paper IV). PDMAPMA-b-PMMA NPs påvisade mycket monodispersa sfärer och nanostrukturer med kärna-skal. Stabila och icke-toxiska NPs av poly(akrylsyra)-b-poly(butylakrylat) (PAA-b-PBA) ytmodifierades med allyl-grupper före biokonjugering för målsökande läkemedelsleverans (Paper V). De modifierade NPs behöll deras kolloidala stabilitet och storlek efter allyl-funktionalisering. DOX inkapslades effektivt (90 %) i PAA-bPBA NPs under partikelbildningen. Kontrollera frisättning av DOX från PAA-b-PBA NPs observerades under 7 dagar.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2020. p. 65
Series
TRITA-CBH-FOU ; 2020:7
Keywords
Biodegradable polymers, SPION, PISA, RAFT, nanoparticles, drug delivery, cytotoxicity, MRI, in vivo fluorescence imaging
National Category
Polymer Chemistry Nano Technology Pharmaceutical Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-263780 (URN)978-91-7873-429-0 (ISBN)
Public defence
2020-03-06, sal F3, Lindstedtsvägen 26, KTH, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-02-07

Available from: 2020-02-07 Created: 2020-02-04 Last updated: 2020-02-07Bibliographically approved

Open Access in DiVA

fulltext(1495 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 1495 kBChecksum SHA-512
81346d5a5c7bc747b3c06847eacfc029ee640c160bc8d16843404f7a80caf734d46b9b1a32915b2e370b859001a6b81cfff06e68a186260aca41d27d1f16269a
Type fulltextMimetype application/pdf
fulltext(792 kB)9 downloads
File information
File name FULLTEXT02.pdfFile size 792 kBChecksum SHA-512
e85606798e4e7b6635f5298067b34cb07369d97aff2ba8cf409e79f9653ba02c6480ae4cd8b4c185c9200fb37af9ab49d72b44b25da62fec892e1b2a16c61714
Type fulltextMimetype application/pdf

Scopus

Authority records BETA

Engström, JoakimAsem, HebaBrismar, HjalmarZhang, YuningMalkoch, MichaelMalmström, Eva

Search in DiVA

By author/editor
Engström, JoakimAsem, HebaBrismar, HjalmarZhang, YuningMalkoch, MichaelMalmström, Eva
By organisation
Wallenberg Wood Science CenterCoating TechnologyScience for Life Laboratory, SciLifeLabApplied PhysicsFibre- and Polymer Technology
In the same journal
Macromolecular Chemistry and Physics
Polymer TechnologiesNano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 32 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf