kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanical Modelling of Powder Compaction: Due to Corona is not possible to attend this defense in person, instead attend via this link: https://play.kth.se/media/t/0_mbkr2jhi​
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0001-8653-393x
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cutting tool inserts, for instance used in steel machining, have the requirement to be toughand are therefore most often manufactured out of cemented carbides, using powdermetallurgy. Manufacturing components with powder metallurgy has its advantages in highproductivity and good net shape. The powder is spray dried and compacted to half itssintered volume. Because of friction between the powder and the pressing tool, the densityafter compaction is uneven, leading to uneven shrinkage during sintering. To get the rightshape after pressing and sintering, the pressing tool must often be compensated, which isboth expensive and time consuming. By doing computer simulations of the manufacturingprocess, the shape after sintering can be predicted and used to compensate the pressing toolbefore it is manufactured, thus saving both time and money. Also cracks and porosity in thepowder blank can be predicted with such simulations.

This thesis studies mechanical modelling of powder compaction in general and compactionof cemented tungsten carbide powders in particular. Because of the amount of powdergranules in a typical geometry, the mechanical behavior is modelled with a continuumapproach, using the finite element method (FEM). Accuracy is important in the presentapplication and therefore a detailed elastic-plastic material model with a density dependentyield surface of Drucker-Prager CAP kind is used.

For accurate material modelling it is important to include relevant features and to excludeunimportant physical effects. In Paper A sensitivity studies are therefore performed inorder to conclude which properties in the material model that have a significant influence onthe result. The studies show that anisotropy can be disregarded in the current application.

In Paper B the effects from creep and compaction speed are studied. It is concluded thatcreep has no influence on the density after compaction, which also is confirmed by densitymeasurements using a neutron source in Paper D. The compaction speed on the other handinfluences the friction coefficient between powder and pressing tool, lower at increasedspeed. In Paper C frictional behavior is scrutinized experimentally with the aid of aninstrumented die. The friction coefficient is determined and analyzed, and it is shown that itdepends on the normal pressure.

The sensitivity studies in Paper A show that measurements of the local density are neededin order to determine and verify material properties. Since the analyzed powder containstungsten (W), which has a high atomic number, a polychromatic beam of thermal neutronsis needed. In Paper D it is shown that the local density can be measured with 3D imagingand a thermal neutron source.

From the results and conclusions in the above-mentioned papers, a material description forpowder compaction is suggested. This description is implemented in FEM in Paper E andapplied to reverse engineering in order to determine important material parameters.Experiments in a pressing machine with a pressing method that includes multiple unloadingsteps is used. The material description with the determined parameters is verified withdensity measurements using a neutron source.

Abstract [sv]

Inom skärande bearbetning av exempelvis stål, där skärspetsen måste vara hård ochhållfast, används oftast hårdmetallskär, tillverkade med pulvermetallurgi. Att tillverkakomponenter med pulvermetallurgi har fördelen att hög produktivitet nära den slutgiltigaformen kan uppnås. Pulvret sprejtorkas och kompakteras till halva den sintrade volymen.Eftersom det uppstår friktion mellan pulver och pressverktyg är densiteten i det pressadeämnet ojämn och därmed krymper ämnet ojämnt under sintring. För att få rätt form efterpressning och sintring måste därför pressverktyget ofta kompenseras, vilket är både dyrtoch tidskrävande. Genom att göra datorsimuleringar av framställningsprocessen kanformen efter pressning och sintring istället predikteras, och pressverktyget kankompenseras före tillverkning, vilket sparar både tid och pengar. Även sprickor ochporositet efter pressning kan förutsägas med sådana simuleringar.

I denna avhandling studeras mekanisk modellering av pulverkompaktering, generellt ochspecifikt för hårdmetall. På grund av mängden granuler i en typisk skärgeometri modellerasde mekaniska egenskaperna med en kontinuumansats och finita elementmetoden (FEM).Eftersom noggrannhet är viktig i denna applikation, används en detaljerad elastisk-plastiskmaterialmodell med en densitetsberoende Drucker-Prager CAP flytyta.

Grundläggande för relevant materialmodellering är att inkludera viktiga egenskaper och attutelämna oviktiga fysikaliska effekter. I Artikel A görs därför känslighetsanalyser för attundersöka vilka delar i materialmodellen som har en signifikant påverkan på resultatet.Slutsatsen är att anisotropi inte behöver modelleras för denna applikation.

I Artikel B studeras effekten av kompakteringshastighet och kryp. Slutsatsen är att krypinte har någon inverkan på densiteten efter pressning, vilket också valideras medneutronmätningar i Artikel D. Presshastigheten påverkar däremot friktionskoefficientenmellan pulver och pressverktyg, lägre vid högre hastighet. I Artikel C analyserasfriktionsbeteendet experimentellt med hjälp av en instrumenterad dyna.Friktionskoefficienten bestäms och analyseras, och slutsatsen är att den beror pånormaltrycket.

Känslighetsanalysen i Artikel A visar att mätningar av den lokala densiteten är nödvändigaför att bestämma och verifiera materialegenskaper. Eftersom det analyserade pulvretinnehåller wolfram (W), som har ett högt atomnummer, krävs en polykromatisk stråle avtermiska neutroner. I Artikel D visas att den lokala densiteten kan mätas med 3D-bildanalysoch termiska neutroner.

Utifrån resultaten och slutsatserna i ovannämnda artiklar föreslås en materialbeskrivningför pulverkompaktering. Beskrivningen är implementerad i FEM i Artikel E och användsmed baklängesoptimering för att bestämma viktiga materialparametrar. Experiment i enpressmaskin och en pressmetod som inkluderar flera avlastningar används.Materialbeskrivningen verifieras med densitetsmätningar där en neutronkälla används.

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2020. , p. 30
Series
TRITA-SCI-FOU ; 2019:63
National Category
Applied Mechanics
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-268185ISBN: 978-91-7873-420-7 (print)OAI: oai:DiVA.org:kth-268185DiVA, id: diva2:1393859
Public defence
2020-03-20, Live streaming, 10:00 (Swedish)
Opponent
Supervisors
Note

QC 20200218

Available from: 2020-02-18 Created: 2020-02-17 Last updated: 2022-06-26Bibliographically approved
List of papers
1. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction
Open this publication in new window or tab >>On the Influence of Material Parameters in a Complex Material Model for Powder Compaction
2016 (English)In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 25, no 10, p. 4408-4415Article in journal (Refereed) Published
Abstract [en]

Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

Place, publisher, year, edition, pages
Springer, 2016
Keywords
constitutive model, material characterization, powder compaction, real inserts, sensitivity analysis, Characterization, Compaction, Constitutive models, Continuum mechanics, Geometry, Complex materials, Finite element simulations, Material characterizations, Material modeling, Material parameter, Parameter sensitivities, Powder compactions, Sensitivity studies, Finite element method
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-195309 (URN)10.1007/s11665-016-2294-y (DOI)000385404800033 ()2-s2.0-84983797997 (Scopus ID)
Note

QC 20161110

Available from: 2016-11-10 Created: 2016-11-02 Last updated: 2024-03-18Bibliographically approved
2. On rate-dependence of hardmetal powder pressing of cutting inserts
Open this publication in new window or tab >>On rate-dependence of hardmetal powder pressing of cutting inserts
2017 (English)In: Powder Metallurgy, ISSN 0032-5899, E-ISSN 1743-2901, Vol. 60, no 1, p. 7-14Article in journal (Refereed) Published
Abstract [en]

The rate-dependence of hardmetal powder pressing in cutting insert production is investigated experimentally and numerically. In the latter case, the finite element method is relied upon using a continuum mechanics approach. In particular, possible rate-dependency due to creep deformation and rate-dependent friction is discussed with the experimental investigation focusing mainly on dimensional changes during sintering but also pressing forces. The results indicate that rate-dependent frictional effects are the dominating feature and accordingly, it can be argued that for the metal powders investigated here, creep deformations do not have to be accounted for in the constitutive description at the timescales relevant for powder pressing and when the shape after sintering is concerned. For the present powder, the apparent frictional effect decreases at higher pressing rates. Additional details of the friction behavior are studied comparing finite element simulations with experiments.

Place, publisher, year, edition, pages
TAYLOR & FRANCIS LTD, 2017
Keywords
Rate-dependence, powder compaction, friction, creep, WC-Co powder, cutting inserts, material model, finite element simulations
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-205172 (URN)10.1080/00325899.2016.1260904 (DOI)000396619000003 ()2-s2.0-85007143910 (Scopus ID)
Note

QC 20170411

Available from: 2017-04-11 Created: 2017-04-11 Last updated: 2022-06-27Bibliographically approved
3. Determination of the Frictional Behavior at Compaction of Powder Materials Consisting of Spray-Dried Granules
Open this publication in new window or tab >>Determination of the Frictional Behavior at Compaction of Powder Materials Consisting of Spray-Dried Granules
2018 (English)In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 27, no 3, p. 1308-1317Article in journal (Refereed) Published
Abstract [en]

The frictional behavior during powder compaction and ejection is studied using an instrumented die with eight radial sensors. The average friction over the total powder pillar is used to determine a local friction coefficient at each sensor. By comparing forces at compaction with forces at ejection, it can be shown that the Coulomb's friction coefficient can be described as a function of normal pressure. Also stick phenomena has been investigated in order to assess its influence on the determination of the local friction coefficient.

Place, publisher, year, edition, pages
Springer, 2018
Keywords
Coulomb friction, cutting inserts, die friction, FEM, finite element simulations, granular powder, powder compaction, reverse engineering, stick, wall friction, WC-Co powder
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-224684 (URN)10.1007/s11665-018-3205-1 (DOI)000426701000041 ()2-s2.0-85042867461 (Scopus ID)
Note

QC 20180326

Available from: 2018-03-26 Created: 2018-03-26 Last updated: 2022-06-26Bibliographically approved
4. Determining the density distribution in cemented carbide powder compacts using 3D neutron imaging
Open this publication in new window or tab >>Determining the density distribution in cemented carbide powder compacts using 3D neutron imaging
Show others...
2019 (English)In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 354, p. 584-590Article in journal (Refereed) Published
Abstract [en]

Spray-dried refractory carbide and metal powder mixtures, containing tungsten carbide, is compacted and sintered during the production of conventional cutting tool inserts. Since friction between the pressing tool and the powder gives rise to density gradients in the powder compact, shrinkage during sintering is uneven. The shape of the sintered blank is important and can be predicted with finite element (FE) simulations. To validate the simulation of the pressing procedure, the density gradients in the powder compacts must be measured with a high spatial resolution. Since tungsten has a high atomic number, it is hard to penetrate with X-rays and even cold neutrons. We show here that by using a polychromatic beam of thermal neutrons, along with beam-hardening correction, such measurements can be successfully realized. The obtained results show good agreement with corresponding FE-simulations. Also, deliberate differences in the compaction process could be verified with the neutron measurements.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Carbide and metal powder mixtures, Density distribution, FEM simulations, Polychromatic thermal neutrons, Powder compaction, Tungsten carbides
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-262514 (URN)10.1016/j.powtec.2019.06.033 (DOI)000490625500056 ()2-s2.0-85068007493 (Scopus ID)
Note

QC 20191028

Available from: 2019-10-28 Created: 2019-10-28 Last updated: 2022-06-26Bibliographically approved
5. Mechanical Characterization of PowderMaterials: A General Approach Detailedfor Cemented Carbides
Open this publication in new window or tab >>Mechanical Characterization of PowderMaterials: A General Approach Detailedfor Cemented Carbides
2020 (English)In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 364, p. 531-537Article in journal (Refereed) Published
Abstract [en]

Material parameter curves in an advanced material model describing compaction of spraydried cemented carbide powder are determined successfully based on a general approach formaterial characterization of powder materials. Pressing forces from a production machineand equivalent finite element (FE) calculations are used in inverse modelling. A pressingmethod that includes multiple unloading steps is used. The material model is of DruckerPrager CAP kind and friction between powder and pressing tool is modelled as a function ofnormal pressure. The results are verified with density gradient measurements using aneutron source. The method is proven to be robust and the results show good agreementbetween experiment and simulation. Effects that have not been captured numericallypreviously are captured due to the high accuracy of material characterization. The presentapproach is detailed for tungsten carbide powders but is valid for other powder materialswhen properly calibrated for constitutive and frictional effects in the same manner asoutlined here.

Keywords
Powder compaction, Inverse modelling, Cemented carbide, FEM, Neutron imaging, Material characterization.
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-268352 (URN)10.1016/j.powtec.2020.02.025 (DOI)000528218100047 ()2-s2.0-85079526089 (Scopus ID)
Note

QC 20200221

Available from: 2020-02-18 Created: 2020-02-18 Last updated: 2022-06-26Bibliographically approved
6. Correction to: On the Influence of Material Parameters in a Complex Material Model for Powder Compaction (Journal of Materials Engineering and Performance, (2016), 25, 10, (4408-4415), 10.1007/s11665-016-2294-y)
Open this publication in new window or tab >>Correction to: On the Influence of Material Parameters in a Complex Material Model for Powder Compaction (Journal of Materials Engineering and Performance, (2016), 25, 10, (4408-4415), 10.1007/s11665-016-2294-y)
2020 (English)In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 29, no 3Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Springer, 2020
National Category
Metallurgy and Metallic Materials
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-268954 (URN)10.1007/s11665-020-04679-z (DOI)000516355700005 ()2-s2.0-85079629983 (Scopus ID)
Note

QC 20200228

Available from: 2020-02-27 Created: 2020-02-27 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(1014 kB)396 downloads
File information
File name FULLTEXT02.pdfFile size 1014 kBChecksum SHA-512
3047a8c6e509fb0d70d4b278e10e6cdf81ae362ef7ff35d158be03ff637379c72d4ecef64a0d7f72648d7f6a53602b4817b3fb210452605dcba157ec39335ca9
Type fulltextMimetype application/pdf

Authority records

Staf, Hjalmar

Search in DiVA

By author/editor
Staf, Hjalmar
By organisation
Solid Mechanics
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 409 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1091 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf