kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Centre for Advanced BioProduction by Continuous Processing, AdBIOPRO. (Cell Technology Group (CETEG); Wallenberg Centre for Protein Research (WCPR), Stockholm, Sweden)ORCID iD: 0000-0002-0584-841X
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Centre for Advanced BioProduction by Continuous Processing, AdBIOPRO. (Cell Technology Group (CETEG), Royal Institute of Technology (KTH), Stockholm, Sweden; Wallenberg Centre for Protein Research (WCPR), Stockholm, Sweden)ORCID iD: 0000-0002-0841-8845
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. (Cell Technology Group (CETEG), Royal Institute of Technology (KTH), Stockholm, Sweden; Wallenberg Centre for Protein Research (WCPR), Stockholm, Sweden)ORCID iD: 0000-0002-8309-6655
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. (Wallenberg Centre for Protein Research (WCPR), Stockholm, Sweden)ORCID iD: 0000-0003-1763-9073
Show others and affiliations
2020 (English)In: Journal of Biotechnology, ISSN 0168-1656, E-ISSN 1873-4863, Vol. 309, p. 44-52Article in journal (Refereed) Published
Abstract [en]

Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 10(8) cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines. In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for < 250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 x 10(6) cells/mL) and high cell densities (80 x 10(6) cells/mL), normal process temperature (37 degrees C) and mild hypothermia (33 degrees C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 309, p. 44-52
Keywords [en]
Chinese Hamster Ovary (CHO) cells, Erythropoietin, High cell density culture, Human embryonic kidney 239 (HEK293) cells, Perfusion process, Small-scale bioreactor
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-268782DOI: 10.1016/j.jbiotec.2019.12.017ISI: 000510824700005PubMedID: 31891733Scopus ID: 2-s2.0-85077033718OAI: oai:DiVA.org:kth-268782DiVA, id: diva2:1396342
Note

QC 20200226

Available from: 2020-02-26 Created: 2020-02-26 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Tools for the development of intensified perfusion processes for mammalian cell culture
Open this publication in new window or tab >>Tools for the development of intensified perfusion processes for mammalian cell culture
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recombinant protein therapeutics have become an indispensable part of modern medicine to treat a wide variety of diseases. Their manufacture is mostly based on mammalian cells with fed-batch production bioreactors and downstream batch purification unit operations. Although significant improvements have been made over the last decades to yield high production titers, concerns about their high capital investment costs and limitations in production flexibility have been raised. As a result, the biopharmaceutical industry is slowly transitioning to continuous biomanufacturing with perfusion bioreactors and integrated continuous downstream processes. The potential to maintain very high cell densities over extended process times in a perfusion culture offers higher volumetric productivities in comparison to fed-batch. This intensified production of recombinant proteins can be performed in smaller volumes, thus reducing equipment size and capital costs. However, new challenges are emerging from this shift to continuous bioprocessing. These include the lack of available scale-down models to streamline process development programs, limited knowledge on the optimization of culture medium and perfusion feed strategy, and shortage of tools for the in-line monitoring of relevant culture parameters to ensure stable perfusion operation with consistent product quality.

This thesis presents tools for the development of intensified perfusion processes with mammalian cells. Monoclonal antibody producing Chinese Hamster Ovary (CHO) cells or erythropoietin producing Human Embryonic Kidney (HEK293) cells were used as model organisms in the studies. Efforts were made to develop a small-scale perfusion system of 200 mL optimized for long-term steady-state cultivations with achievable cell densities of at least 108 cells/mL. It was shown that volumetric productivities increased linearly with the cell density, thus demonstrating successful process intensification by high cell density perfusion. The small scale of this perfusion bioreactor enabled the conduction of a larger number of experiments with reduced workload and material consumption in a shorter timeframe in the following studies. To control the formation of byproducts, such as lactate, and the N-glycosylation of antibodies, which is an important quality attribute, a novel feed strategy for sugars including glucose, mannose and galactose was developed and implemented. With this feeding strategy, the sugars are delivered to match a target cell specific consumption rate, independent of the cell specific perfusion rate (CSPR). Furthermore, a high cell density perfusion process at a CSPR of 15 pL cell-1 day-1 was developed with high specific antibody productivity after sequential scanning of multiple steady states with various cell densities and perfusion rates. The dynamics in culture parameters from these development runs allowed the calibration of predictive models based on Raman spectroscopy, to enable real-time monitoring of multiple parameters in a perfusion culture. It was shown for example that the N-glycosylation profile was predicted with sufficient accuracy in validation experiments. Moreover, the perfusion process developed on small scale was transferred to a 30 L pilot-scale process, where it was successfully operated for 20 days. The steady state operation ensured a consistent product quality and the integrated continuous downstream process removed most impurities, while ensuring a high recovery yield. Finally, a strategy for perfusion medium optimization in CHO cell cultures operated with very low CSPR was presented by utilizing microbioreactors in combination with design of experiments methodology.

To conclude, the strategies presented in this thesis provide a new toolbox for the development and control of intensified perfusion processes, and supports the biopharmaceutical industry in their efforts to swiftly adapt continuous bioprocessing in commercial manufacturing of recombinant proteins.

Abstract [sv]

Rekombinant proteinbaserade bioläkemedel har blivit en oumbärlig del av modern medicin för behandling av en mängd olika sjukdomar. Deras tillverkning är huvudsakligen baserad på däggdjursceller producerade i fed-batch odlingar i bioreaktorer, följt av nedströms reningsprocess utfärd batchvis. Trots att betydande förbättringar har skett under de senaste decennierna för att öka deras produktionstitrar, är deras höga kapitalinvesteringskostnader och begränsningar i produktionsflexibilitet problematiska. Till följd av detta övergår den biofarmaceutiska industrin sakta mot kontinuerlig tillverkning med perfusionsbioreaktorer och integrerade kontinuerliga nedströmsprocesser. Potentialen att upprätthålla mycket höga celltätheter under långa processtider i en perfusionsodling ger högre volymetrisk produktivitet jämfört med fed-batch. Denna intensifierade produktion för rekombinanta proteiner kan utföras i mindre volymer vilket minskar storlek på utrustning och kapitalkostnader. Nya utmaningar uppstår dock vid övergång till kontinuerlig process. Dessa inkluderar brist på nedskalningsmodeller för att effektivisera processutveckling, begränsad kunskap om optimering av odlingsmedium och strategier for perfusion, samt brist på verktyg för in-line monitoring av relevanta odlingsparametrar för att säkerställa stabil perfusionsproduktion med konsekvent produktkvalitet.

Denna avhandling presenterar verktyg för utveckling av intensifierade perfusionsprocesser baserade på däggdjursceller. Monoklonal antikropps-producerande Chinese Hamster Ovary celler (CHO) eller erytropoietin-producerande humana embryonala njurceller (HEK293) användes som modellorganismer i studierna. Ett småskaligt perfusionssystem på 200 mL utvecklades, optimerat för långtidsodlingar i stabilt tillstånd med celltätheter på minst 108 celler/ml. Den volymetriska produktiviteten ökade linjärt med celltätheten, vilket visade framgångsrik processintensifiering med perfusion vid hög celltäthet. Tack vare den lilla storleken på perfusionsbioreaktorn, kunde ett större antal experiment med minskad arbetsbelastning och materialförbrukning genomföras inom en kortare tidsram i följande studier. För att kontrollera skapandet av biprodukter, såsom laktat, och N-glykosyleringen av antikroppar, vilket är en viktig kvalitetsegenskap, implementerades en ny feedingsstrategi för sockerarter inklusive glukos, mannos och galaktos. Med denna feedingsstrategi levereras sockerarterna för att matcha en målcellspecifik konsumtionshastighet, oberoende av den cellspecifika perfusionshastigheten (CSPR). Vidare utvecklades en perfusionsprocess med hög celltäthet vid en CSPR på 15 pL cell-1 dag-1 med hög specifik antikroppsproduktivitet efter sekventiell skanning av flera steady-states med olika celltätheter och perfusionshastigheter. Dynamiken i odlingsparametrar från dessa utvecklingskörningar möjliggjorde kalibrering av prediktiva modeller baserade på Raman-spektroskopi, för att möjliggöra realtidsmonitorering av flera parametrar i en perfusionsodling. Till exempel förutspåddes N-glykosyleringsprofilen med tillfredsställande noggrannhet i valideringsexperiment. Dessutom överfördes den perfusionsprocessen utvecklad i liten skala till en 30 L pilotskalaprocess, där den drevs framgångsrikt i 20 dagar. Driften i steady-state säkerställde en konsekvent produktkvalitet och den integrerade kontinuerliga nedströmsprocessen tog bort de flesta föroreningar, samtidigt som ett högt utbyte uppnåddes. Slutligen presenteras en strategi för optimering av perfusionsmedium för CHO-cellodlingar drivna vid mycket låg CSPR, genom att använda mikrobioreaktorer i kombination med Design of Experiment-metodik.

Sammanfattningsvis presenterar denna avhandling en verktygslåda med strategier för utveckling och kontroll av intensifierade perfusionsprocesser, samt stöder den biofarmaceutiska industrin i deras anpassning till kontinuerlig bioprocessteknik för kommersiell tillverkning av rekombinanta proteiner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 104
Series
TRITA-CBH-FOU ; 2022:35
Keywords
Recombinant protein biomanufacturing, Perfusion process, Integrated continuous bioprocessing, Monoclonal antibody, Erythropoietin, Chinese Hamster Ovary cells, Human Embryonic Kidney cells, Perfusion medium optimization, Cell specific perfusion rate, Raman spectroscopy, N-glycosylation, Microbioreactors, Design of Experiments
National Category
Bioprocess Technology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-312457 (URN)978-91-8040-274-3 (ISBN)
Public defence
2022-06-14, FD5, Roslagstullsbacken 21, via Zoom: https://kth-se.zoom.us/webinar/register/WN_vf2gdwkYTOatngRI16Emxw https://kth-se.zoom.us/webinar/register/WN_vf2gdwkYTOatngRI16Emxw, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2022-05-19

Available from: 2022-05-19 Created: 2022-05-18 Last updated: 2022-09-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Schwarz, HubertZhang, YeZhan, CaijuanMalm, MagdalenaRockberg, JohanChotteau, Veronique

Search in DiVA

By author/editor
Schwarz, HubertZhang, YeZhan, CaijuanMalm, MagdalenaRockberg, JohanChotteau, Veronique
By organisation
Industrial BiotechnologyCentre for Advanced BioProduction by Continuous Processing, AdBIOPROProtein ScienceProtein Technology
In the same journal
Journal of Biotechnology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 842 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf