CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical characterization of LiNi1/3Mn1/3Co1/3O2 at different stages of lifetime
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-8532-122x
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Li-ion batteries have entered our everyday life first as power sources for small electronics, and recently for electric vehicles and stationary storage applications. As the requirements on the performance and lifetime of Li-ion batteries increase and diversify, it becomes paramount to properly understand their electrochemical performance at single-electrode level, and their evolution over cycling. This is crucial for both the design of improved electrode materials, better suited for the most recent applications, but also for accurately predicting the performance decay of existing devices. As the component of focus, the positive electrode was chosen, since it limits both power and energy in Li-ion batteries. Specifically, the material investigated was LiNi1/3Mn1/3Co1/3O2 (NMC111), a state-of-the-art, fully commercial electrode, as well as the precursor for Nirich LiNixMnyCo1 –x –yO2, towards which research is very active. Starting at Beginning of Life, NMC111 was characterized though a combination of electrochemical techniques at varying temperatures (Constant Current cycling, Cyclic Voltammetry, Galvanostatic Intermittent Titration Technique, and Electrochemical Impedance Spectroscopy), which were compared and discussed in terms of electrode response and suitability. Thermodynamic and dynamic properties were obtained, and supported the design of a semi-empirical model for predicting LIBs voltage characteristics. This knowledge was also used to monitor the evolution of NMC111’s performance under high voltage operation, and the possibility of connecting changes in the electrochemical response to specific ageing phenomena: this information could support the creation of physics-based predictive models.

Abstract [sv]

Litiumjonbatterier är numera en del av vår vardag och har sedan länge

använts som energilager i konsumentelektronik och har på senare år även blivit en viktig del i elektrifierade fordon samt för stationär energilagring.

När kraven på prestanda och livslängd för litiumjonbatterierna ökar

och diversifieras blir det viktigare att förstå den elektrokemiska prestandan på elektrodnivå och hur egenskaperna förändras vid cykling. Detta är avgörande för utformning av förbättrade elektrodmaterial som är bättre lämpade för framtida applikationer, samt också för att kunna förutsäga batteriprestandaförlust i befintliga applikationer. Detta arbete har fokuserat

på den positiva elektroden eftersom den är begränsande både gällande effekt och energi i litiumjonbatterier. Elektrodmaterialet

LiNi1/3Mn1/3Co1/3O2 (NMC111), ett kommersiell tillgängligt och ofta använt elektrodmaterial i dagens litiumjonbatterier har undersökts i detta arbete.

Detta material är föregångare till de nickelrika elektrodmaterial (LiNixMnyCo1-x-yO2) där intensiv forskning sker idag. Undersökning av nytt NMC111-material utfördes med en kombination av tekniker vid varierande temperaturer (konstantströmcykling, cyklisk voltammetri, galvanostatisk intermittent titreringsteknik och elektrokemisk impedansspektroskopi) och resultaten jämfördes och diskuterades med avseende på elektrodrespons och lämplighet. Termodynamiska och dynamiska egenskaper erhölls och stödde utformningen av en semi-empirisk modell för att förutsäga

spänningsegenskaper hos litiumjonbatterier. Denna kunskap användes också för att övervaka förändringen av egenskaperna hos NMC111 vid cykling till högre spänningsnivåer samt för att försöka sammankoppla förändringar av elektrokemiska egenskaper till specifika åldringsfenomen: denna information kan stödja skapandet av fysikbaserade prediktiva modeller.​

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 68
Series
TRITA-CBH-FOU ; 2020:13
Keywords [en]
Li-ion battery, positive electrode, LiNi1/3Mn1/3Co1/3O2, electrochemical characterization, ageing, semi-empirical model
National Category
Engineering and Technology
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-268936ISBN: 978-91-7873-457-3 (print)OAI: oai:DiVA.org:kth-268936DiVA, id: diva2:1396836
Public defence
2020-03-27, https://kth-se.zoom.us/webinar/register/WN_BfA8UJa9TpyPf7oprzShDA, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-02-27

Available from: 2020-02-27 Created: 2020-02-26 Last updated: 2020-03-25Bibliographically approved
List of papers
1. Electrochemical techniques for characterizingLiNixMnyCo1 – x – yO2 battery electrodes
Open this publication in new window or tab >>Electrochemical techniques for characterizingLiNixMnyCo1 – x – yO2 battery electrodes
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Engineering and Technology
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-268894 (URN)
Note

QC 20200225

Available from: 2020-02-25 Created: 2020-02-25 Last updated: 2020-02-26Bibliographically approved
2. Porous Electrode Model with Particle Stress Effects for Li(Ni1/3Co1/3Mn1/3)O2 Electrode
Open this publication in new window or tab >>Porous Electrode Model with Particle Stress Effects for Li(Ni1/3Co1/3Mn1/3)O2 Electrode
Show others...
2019 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111Article in journal (Refereed) Published
Abstract [en]

A porous electrode model, incorporating particle stress effects, is developed for the electrode kinetic processes in the positive Li(Ni1/3Mn1/3Co1/3)O2 or NMC111 electrode. The model is used to analyze experimental data from galvanostatic intermittent titration technique (GITT) during charging at the beginning of life. The equilibrium potential accounts for the influence of mechanical stress in the electrode particles. While the standard Newman-based model proves unable to capture the dynamic performance of NMC111, the extended model with stress allows good fits of the GITT responses for NMC half cells for a voltage range from 3.7–4.1 V vs Li/Li+ at 10°C, 25°C and 40°C. Four physical parameters are extracted to analyze the underlying diffusive, kinetic, thermodynamic and stress phenomena from polarization to relaxation during a GITT transient. Strong dependencies of the kinetic rate constant k, slope of the open-circuit potential curve dEconc/dxpos and stress proportionality factor ϒstress with lithium concentration are found. The effective diffusion coefficients Ds,eff are ∼10−14 – 10−13 cm2/s across voltages and temperatures. Diffusion limitation and particle surface stress are more profound at higher voltages and at higher temperatures. This leads to large lithium concentration gradient near particle surface, requiring longer relaxation time during GITT.

Keywords
Batteries - Lithium, Electrode Kinetics
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-256548 (URN)10.1149/2.0661913jes (DOI)000483501000003 ()2-s2.0-85073684103 (Scopus ID)
Note

QC 20190903

Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2020-03-09Bibliographically approved
3. Quantitative study of Li-ion battery ageing: the case of LiNi1/3Mn1/3Co1/3O2 under high voltage operation
Open this publication in new window or tab >>Quantitative study of Li-ion battery ageing: the case of LiNi1/3Mn1/3Co1/3O2 under high voltage operation
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Engineering and Technology
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-268895 (URN)
Note

QC 20200225

Available from: 2020-02-25 Created: 2020-02-25 Last updated: 2020-02-26Bibliographically approved
4. A semi-empirical, electrochemistry-based model for Li-ion battery performance prediction over lifetime
Open this publication in new window or tab >>A semi-empirical, electrochemistry-based model for Li-ion battery performance prediction over lifetime
2019 (English)In: Journal of Energy Storage, E-ISSN 2352-152X, Vol. 25, article id UNSP 100819Article in journal (Refereed) Published
Abstract [en]

Predicting the performance of Li-ion batteries over lifetime is necessary for design and optimal operation of integrated energy systems, as electric vehicles and energy grids. For prediction purposes, several models have been suggested in the literature, with different levels of complexity and predictability. In particular, electrochemical models suffer of high computational costs, while empirical models are deprived of physical meaning. In the present work, a semi-empirical model is suggested, holding the computational efficiency of empirical approaches (low number of fitting parameters, low-order algebraic equations), while providing insights on the processes occurring in the battery during operation. The proposed model is successfully validated on experimental battery cycles: specifically, in conditions of capacity fade > 20%, and dynamic cycling at different temperatures. A comparable performance to up-to-date empirical models is achieved both in terms of computational time, and correlation coefficient R-2. In addition, analyzing the evolution of fitting parameters as a function of cycle number allows to identify the limiting processes in the overall battery degradation for all the protocols considered. The model suggested is thus suitable for implementation in system modelling, and it can be employed as an informative tool for improved design and operational strategies.

Place, publisher, year, edition, pages
ELSEVIER, 2019
Keywords
Li-ion battery, Semi-empirical model, Performance and lifetime prediction, Ageing mechanisms
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-263347 (URN)10.1016/j.est.2019.100819 (DOI)000489689000014 ()2-s2.0-85073706203 (Scopus ID)
Conference
Fall Meeting and Exhibit of the European-Materials-Research-Society (E-MRS), SEP 17-20, 2018, Warsaw Univ Technol, Warsaw, POLAND
Note

QC 20191119

Available from: 2019-11-19 Created: 2019-11-19 Last updated: 2020-02-26Bibliographically approved
5. Effect of partial cycling of NCA/graphite 1 cylindrical cells in different SOC intervals
Open this publication in new window or tab >>Effect of partial cycling of NCA/graphite 1 cylindrical cells in different SOC intervals
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Engineering and Technology
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-268896 (URN)
Note

QC 20200225

Available from: 2020-02-25 Created: 2020-02-25 Last updated: 2020-02-26Bibliographically approved

Open Access in DiVA

fulltext(4326 kB)65 downloads
File information
File name FULLTEXT01.pdfFile size 4326 kBChecksum SHA-512
23c946468afef211cbd5e592e44e54b28970da0911553531c6e568e80e03da8b0beee03ddcebb4a08250ce98de24c312131fcda9fae5e807001c06b2efe09963
Type fulltextMimetype application/pdf

Authority records BETA

Varini, Maria

Search in DiVA

By author/editor
Varini, Maria
By organisation
Applied Electrochemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 65 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 276 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf