Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Catalytic combustion of methane over perovskite supported on lanthanum hexaaluminate prepared through the microemulsion method
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
2007 (engelsk)Inngår i: Studies in Surface Science and Catalysis, ISSN 0167-2991, Vol. 172, s. 465-468Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2007. Vol. 172, s. 465-468
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-8649OAI: oai:DiVA.org:kth-8649DiVA, id: diva2:14028
Merknad
QC 20100716Tilgjengelig fra: 2008-06-04 Laget: 2008-06-04 Sist oppdatert: 2017-12-14bibliografisk kontrollert
Inngår i avhandling
1. Nanotemplated High-Temperature Materials for Catalytic Combustion
Åpne denne publikasjonen i ny fane eller vindu >>Nanotemplated High-Temperature Materials for Catalytic Combustion
2008 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Catalytic combustion is a promising technology for heat and power applications, especially gas turbines. By using catalytic combustion ultra low emissions of nitrogen oxides (NOX), carbon monoxide (CO) and unburned hydrocarbons (UHC) can be reached simultaneously, which is very difficult with conventional combustion technologies. Besides achieving low emission levels, catalytic combustion can stabilize the combustion and thereby be used to obtain stable combustion with low heating-value gases. This thesis is focused on the high-temperature part of the catalytic combustor. The level of performance demanded on this part has proven hard to achieve. In order to make the catalytic combustor an alternative to the conventional flame combustor, more stable catalysts with higher activity have to be developed.

The objective of this work was to develop catalysts with higher activity and stability, suitable for the high-temperature part of a catalytic combustor fueled by natural gas. Two template-based preparation methods were developed for this purpose. One method was based on soft templates (microemulsion) and the other on hard templates (carbon). Supports known for their stability, magnesia and hexaaluminate, were prepared using the developed methods. Catalytically active materials, perovskite (LaMnO3) and ceria (CeO2), were added to the supports in order to obtain catalysts with high activities and stabilities. The supports were impregnated with active materials by using a conventional technique as well as by using the microemulsion technique.

It was shown that the microemulsion method can be used to prepare catalysts with higher activity compared to the conventional methods. Furthermore, by using a microemulsion to apply active materials onto the support a significantly higher activity was obtained than when using the conventional impregnation technique. Since the catalysts will operate in the catalytic combustor for extended periods of time under harsh conditions, an aging study was performed on selected catalysts prepared by the microemulsion technique. The stability of the catalysts was assessed by measuring the activity before and after aging at 1000 C in humid air for 100 h. One of the most stable catalysts reported in the literature, LMHA (manganese-substituted lanthanum hexaaluminate), was included in the study for comparative purposes. The results showed that LMHA deactivated much more strongly compared to several of the catalysts consisting of ceria supported on lanthanum hexaaluminate prepared by the developed microemulsion method.

Carbon templating was shown be a very good technique for the preparation of high-surface-area hexaaluminates with excellent sintering resistance. It was found that the pore size distribution of the carbon used as template was a crucial parameter in the preparation of hexaaluminates. When a carbon with small pores was used as template, the formation of the hexaaluminate crystals was strongly inhibited. This resulted in a material with poor sintering resistance. On the other hand, if a carbon with larger pores was used as template, it was possible to prepare materials with hexaaluminate as the major phase. These materials were, after accelerated aging at 1400 C in humid air, shown to retain surface areas twice as high as reported for conventionally prepared materials.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2008. s. xiii, 76
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2008:46
Emneord
Carbon templating, Catalytic combustion, Ceria, Gas turbine, Hexaaluminate, Magnesia, Methane, Microemulsion, Perovskite
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-4800 (URN)978-91-7415-019-3 (ISBN)
Disputas
2008-06-13, D1, Huvudbyggnaden, Lindstedtsvägen 17, Stockholm, 10:00
Opponent
Veileder
Merknad
QC 20100719Tilgjengelig fra: 2008-06-04 Laget: 2008-06-04 Sist oppdatert: 2010-07-19bibliografisk kontrollert
2. Nanomaterials for high-temperature catalytic combustion
Åpne denne publikasjonen i ny fane eller vindu >>Nanomaterials for high-temperature catalytic combustion
2007 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [sv]

Katalytisk förbränning är en lovande teknik för användning vid kraftgenerering, särskilt för gasturbiner. Genom att använda katalytisk förbränning kan man nå mycket låga emissioner av kväveoxider (NOX), kolmonoxid (CO) och oförbrända kolväten (UHC) samtidigt, vilket är svårt vid konventionell förbränning. Förutom att man erhåller låga emissioner, kan katalytisk förbränning stabilisera förbränningen och kan därmed användas för att uppnå stabil förbränning för gaser med låga värmevärden.

Denna avhandling behandlar huvudsakligen högtemperaturdelen av den katalytiska förbränningskammaren. Kraven på denna del har visat sig svåra att nå. För att den katalytiska förbränningskammaren ska kunna göras till ett alternativ till den konventionella, måste katalysatorer med bättre stabilitet och aktivitet utvecklas.

Målet med denna avhandling har varit att utveckla katalysatorer med högre aktivitet och stabilitet, lämpliga för högtemperaturdelen av en katalytisk förbränningskammare för förbränning av naturgas.

En mikroemulsionsbaserad framställningsmetod utvecklades för att undersöka om den kunde ge katalysatorer med bättre stabilitet och aktivitet. Bärarmaterial som är kända för sin stabilitet, magnesia och hexaaluminat, framställdes med den nya metoden. Mikroemulsionsmetoden användes också för att impregnera de framställda materialen med de mer aktiva materialen perovskit (LaMnO3) och ceriumdioxid (CeO2). Det visade sig att mikroemulsionsmetoden kan användas för att framställa katalysatorer med bättre aktivitet jämfört med de konventionella framställningsmetoderna. Genom att använda mikroemulsionen för att lägga på aktiva material på bäraren erhölls också en högre aktivitet jämfört med konventionella beläggningsstekniker.

Eftersom katalysatorerna ska användas under lång tid i förbräningskammaren utfördes också en åldringsstudie. Som jämförelse användes en av de mest stabila materialen som rapporterats i litteraturen: LMHA (mangan-substituerad lantan-hexaaluminat). Resultaten visade att LMHA deaktiverade mycket mer jämfört med flera av katalysatorerna innehållande ceriumdioxid på hexaaluminat som framställts med den utvecklade mikroemulsionstekniken.

Abstract [en]

Catalytic combustion is a promising technology for power applications, especially gas turbines. By using catalytic combustion ultra low emissions of nitrogen oxides (NOX), carbon monoxide (CO) and unburned hydrocarbons (UHC) can be reached simultaneously, which is very difficult with conventional combustion technologies. Besides achieving low emission levels, catalytic combustion can stabilize the combustion and thereby be used to obtain stable combustion with low heating-value gases. This thesis is focused on the high temperature part of the catalytic combustor. The level of performance demanded on this part has been proven hard to achieve. In order to make the catalytic combustor an alternative to the conventional flame combustor, more stable catalysts with higher activity have to be developed.

The objective of this work was to develop catalysts with higher activity and stability, suitable for the high-temperature part of a catalytic combustor fueled by natural gas. A microemulsion-based preparation method was developed for this purpose in an attempt to increase the stability and activity of the catalysts. Supports known for their stability, magnesia and hexaaluminate, were prepared using the new method. The microemulsion method was also used to impregnate the prepared material with the more active materials perovskite (LaMnO3) and ceria (CeO2). It was shown that the microemulsion method could be used to prepare catalysts with better activity compared to the conventional methods. Furthermore, by using the microemulsion to apply active materials onto the support a significantly higher activity was obtained than when using conventional impregnation techniques.

Since the catalysts will operate in the catalytic combustor for extended periods of time under harsh conditions, an aging study was performed. One of the most stable catalysts reported in the literature, LMHA (manganese-substituted lanthanum hexaaluminate), was included in the study for comparison purposes. The results show that LMHA deactivated much more strongly compared to several of the catalysts consisting of ceria supported on lanthanum hexaaluminate prepared by the developed microemulsion method.

sted, utgiver, år, opplag, sider
Stockholm: KTH, 2007. s. xii, 67
Serie
Trita-CHE-Report, ISSN 1654-1081 ; 2007:24
Emneord
catalytic combustion, microemulsion, hexaaluminate, magnesia, perovskite, ceria, methane, gas turbine, katalytisk förbränning, mikroemulsion, hexaaluminat, magnesia, perovskit, ceriumdioxid, metan, gasturbin
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-4360 (URN)978-91-7178-656-2 (ISBN)
Presentation
2007-05-16, 593, Teknikringen 42, 100 44 Stockholm, 14:00
Veileder
Merknad
QC 20101104Tilgjengelig fra: 2007-05-08 Laget: 2007-05-08 Sist oppdatert: 2010-11-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Elm Svensson, ErikLualdi, MatteoBoutonnet, MagaliJärås, Sven
Av organisasjonen
I samme tidsskrift
Studies in Surface Science and Catalysis

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 357 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf