Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Heteroepitaxy of InP on Silicon-on-Insulator for Optoelectronic Integration
KTH, Skolan för informations- och kommunikationsteknik (ICT), Mikroelektronik och Informationsteknik, IMIT.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Mikroelektronik och Informationsteknik, IMIT.
Visa övriga samt affilieringar
2007 (Engelska)Ingår i: ECS Transactions, ISSN 1938-5862, Vol. 3, nr 39, s. 23-29Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Epitaxial lateral overgrowth of InP was performed on patterned silicon-on-insulator (SOI) and compared with that on Si substrates in a low pressure hydride vapor phase epitaxy system. The InP was characterized by cathodoluminescence. No red shift of peak wavelength was detected for InP/SOI indicating a negligible thermal strain. Additional low energy peaks were found in some regions with a granular structure on the SOI template. A subsequent growth of an InGaAsP/InP MQW (multi quantum well) structure (λ∼1.5 μm) was grown on the SOI template and on a planar InP reference sample by metal-organic phase epitaxy. The MQW was characterized by room temperature photoluminescence. A red shift of 35 nm with respect to the reference sample was attributed to the selective-area effect causing thicker wells and/or an increased indium content. Although the PL intensity was weaker than that obtained for the reference, the FWHMs were comparable.

Ort, förlag, år, upplaga, sidor
2007. Vol. 3, nr 39, s. 23-29
Nyckelord [en]
area effect, Electrochemical Society (ECS), Epitaxial lateral overgrowth (ELOG), Granular structures, Hetero-epitaxy, Hydride vapor-phase epitaxy (HVPE), indium content, InGaAsP/InP, Low pressure (LP), Low-energy peaks, Metal organic (MO), Multi quantum well (MQW), on Patterned Silicon (GPS), Optoelectronic integrations, Peak wavelengths, Photoluminescence (PL) intensity, red shifting, Room Temperature Photoluminescence (RT-PL), Si(2 1 1) substrates, Silicon on insulator (SOI), Astrophysics, Blood vessel prostheses, Computer networks, Crystal growth, Doppler effect, Epitaxial growth, Light emission, Luminescence, Microsensors, Molecular beam epitaxy, Nonmetals, Optical sensors, Photonics, Semiconductor quantum wells, Silicon
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:kth:diva-8657DOI: 10.1149/1.2818558Scopus ID: 2-s2.0-43249115741OAI: oai:DiVA.org:kth-8657DiVA, id: diva2:14037
Anmärkning
QC 20100902Tillgänglig från: 2008-06-04 Skapad: 2008-06-04 Senast uppdaterad: 2010-09-02Bibliografiskt granskad
Ingår i avhandling
1. Selective Epitaxy of Indium Phosphide and Heteroepitaxy of Indium Phosphide on Silicon for Monolithic Integration
Öppna denna publikation i ny flik eller fönster >>Selective Epitaxy of Indium Phosphide and Heteroepitaxy of Indium Phosphide on Silicon for Monolithic Integration
2008 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A densely and monolithically integrated photonic chip on indium phosphide is greatly in need for data transmission but the present day’s level of integration in InP is very low. Silicon enjoys a unique position among all the semiconductors in its level of integration. But it suffers from its slow signal transmission between the circuit boards and between the chips as it uses conventional electronic wire connections. This being the bottle-neck that hinders enhanced transmission speed, optical-interconnects in silicon have been the dream for several years. Suffering from its inherent deficient optical properties, silicon is not supposed to offer this feasibility in the near future. Hence, integration of direct bandgap materials, such as indium phosphide on silicon, is one of the viable alternatives. This thesis addresses these two issues, namely monolithic integration on indium phosphide and monolithic integration of indium phosphide on silicon. To this end, we use two techniques, namely selective epitaxy and heteroepitaxy by employing hydride vapor phase epitaxy method.

The first part deals with the exploitation of selective epitaxy for fabricating a discrete and an integrated chip based on InP. The former is a multi-quantum well buried heterostructure laser emitting at 1.55 µm that makes use of AlGaInAs and InGaAsP as the barrier and well, respectively. We demonstrate that even though it contains Al in the active region, semi-insulating InP:Fe can be regrown. The lasers demonstrate threshold as low as 115A/cm2/quantum well, an external quantum efficiency of 45% and a characteristic temperature of 78 K, all at 20 oC. Concerning the integrated device, we demonstrate complex and densely packed buried arrayed waveguide (AWG) structures found in advanced systems-on-the-chip for optical code-division multiple-access (O-CDMA). We present a case of an error-free 10 Gb/s encoding and decoding operation from an eight-channel AWGs with 180 GHz channel spacing. Selective epitaxial growth aspects specific to these complicated structures are also described and guidance on design implementation of these AWGs is given. Mass transport studies on these AWGs are also presented.

The second part deals with various studies on and relevant to epitaxial lateral overgrowth (ELOG) of high quality InP on silicon. (i) ELOG often encounters cases where most part of the surface is covered by mask. From the modeling on large mask area effects, their impact on the transport and kinetic properties has been established. (ii) It is known that ELOG causes strain in the materials. From synchrotron X-ray measurements, strain is shown to have large effect on the mask edges and the underlying substrate. (iii) The combination of strain and the influence of image forces when reducing the opening dimensions in ELOG has been modeled. It is found to be very beneficial to reduce openings down to ~100 nm where effective filtering of dislocations is predicted to take place even in vicinity of the openings. We call it nano-ELOG. (iv) By combining the modeling results of nano-ELOG and of a pre-study of ELOG on pure InP, a novel net pattern design is invented and experimented for nano-ELOG of InP on Si. PL measurements together with transmission electron microscopy observations indicate beneficial effects of small size openings (200 nm) compared to 1000 nm openings. (v) ELOG of InP on silicon-on-insulators together with a multi-quantum well structure grown on it has been demonstrated for the first time. This is particularly interesting for integrating silicon/silicon dioxide waveguides with InP.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH, 2008. s. xii, 90
Serie
Trita-ICT/MAP AVH, ISSN 1653-7610 ; 2008:11
Nyckelord
Semiconductor Physics
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:kth:diva-4801 (URN)978-91-7178-991-4 (ISBN)
Disputation
2008-06-13, N2, School of Information and Communication Technology, Electrum 3, Isafjordsgatan 28 A/D, Kista, 10:15
Opponent
Handledare
Anmärkning
QC 20100902Tillgänglig från: 2008-06-04 Skapad: 2008-06-04 Senast uppdaterad: 2010-09-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lourdudoss, Sebastian

Sök vidare i DiVA

Av författaren/redaktören
Olsson, FredrikAubert, AmandineBerggren, JesperLourdudoss, Sebastian
Av organisationen
Mikroelektronik och Informationsteknik, IMIT
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 98 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf