kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic signatures of domain walls in s plus is and s plus id superconductors: Observability and what that can tell us about the superconducting order parameter
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.
Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England..
School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom.
Show others and affiliations
2020 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 101, no 5, article id 054507Article in journal (Refereed) Published
Abstract [en]

One of the defining features of spontaneously broken time-reversal symmetry (BTRS) is the existence of domain walls, the detection of which would be strong evidence for such systems. There is keen interest in BTRS currently, in part, due to recent muon spin rotation experiments, which have pointed towards Ba1-xKxFe2As2 exhibiting a remarkable case of s-wave superconductivity with spontaneously broken time-reversal symmetry. A key question, however, is how to differentiate between the different theoretical models which describe such a state. Two particularly popular choices of model are s + is and s + id superconducting states. In this paper, we obtain solutions for domain walls in s + is and s + id systems, including the effects of lattice anisotropies. We show that, in general, both models exhibit spontaneous magnetic fields that extend along the entire length of the domain wall. We demonstrate the qualitative difference between the magnetic signatures of s + is and s + id domain walls and propose a procedure to extract the superconducting pairing symmetry from the magnetic-field response of domain walls.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2020. Vol. 101, no 5, article id 054507
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-269453DOI: 10.1103/PhysRevB.101.054507ISI: 000514314500002Scopus ID: 2-s2.0-85079790156OAI: oai:DiVA.org:kth-269453DiVA, id: diva2:1413378
Note

QC 20200310

Available from: 2020-03-10 Created: 2020-03-10 Last updated: 2024-04-29Bibliographically approved
In thesis
1. Numerical solutions to non-linear inhomogeneous problems in Superconductivity: From sphalerons to multi-band boundary states and spontaneous magnetic fields
Open this publication in new window or tab >>Numerical solutions to non-linear inhomogeneous problems in Superconductivity: From sphalerons to multi-band boundary states and spontaneous magnetic fields
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is a compilation of theoretical works focused on simulating and studying open questions regarding single and multiband superconductivity. In the last decades, with the discovery of multiband superconductors, the spectrum of potential applications has greatly widened. Superconductors are not only employed to realize dissipationless current carrying devices, but are used to construct quantum-based measurement instruments, such as single photon detectors as well as superconducting qubits. The properties of superconductors, as critical temperatures and vortex nucleation barriers are of key importance for applications, and still poorly understood. They are strongly affected by the physics of the boundaries, as well as by the sample's geometry and by the presence of impurities. The open questions can be answered with new theoretical methods, which can then guide and optimize the construction process of superconducting devices, which constitutes a crucial challenge today. 

There are several models that can be utilized to describe superconductors, from the microscopic Bardeen Cooper Schrieffer theory, up to the macroscopic Ginzburg Landau models. Each of these theories carries advantages and limitations, making it impossible to rely only on a specific model. In this thesis we utilize microscopic and macroscopic models to answer the following questions:

  • How can we determine the free energy barriers to vortex nucleation in single band and multiband superconductors without relying on uncontrolled approximations?
  • What are the properties of the superconducting states which spontaneously break time reversal symmetry?
  • How do boundaries and interfaces influence the critical temperatures of superconductors?

We answer these questions in eight papers, which we shortly summarize in the following. 

In Paper 1, Magnetic signatures of domain walls in s+is and s+id superconductors: Observability and what that can tell us about the superconducting order parameter, we consider an effective two-band anisotropic Ginzburg Landau model, describing a superconductor breaking time reversal symmetry. There is high interest on spontaneous time reversal symmetry breaking due to recent muon-spin rotation experiments, claiming to measure spontaneous magnetic field in Fe-based superconductors such as Ba1-xKxFe2As2. However, the symmetry of the superconducting order parameters remains undetermined, and the most promising candidates are s+is and s+id states. In the work, we obtain solutions for domain walls within the Ginzburg Landau model.  By studying the spontaneous magnetic signatures of domain walls, having different orientations with respect to the crystalline axes, for both s+is and s+id order parameters, we demonstrate their differences and propose a procedure to infer the order parameter's symmetry from magnetic field measurements.

In Paper 2, Vortex nucleation barrier in superconductors beyond the Bean-Livingston approximation: A numerical approach for the sphaleron problem in a gauge theory, we address the long standing problem of calculating the energy barriers for the vortex nucleation in a superconductor. The only available tool to do so, was the Bean-Livingston theory, which relies on uncontrollable approximations. This does not allow to take into account the non-linear nature of the Ginzburg Landau model, or the presence of impurities and surface roughness. Therefore, we develop the gauged string method, a gauge invariant numerical framework, based on the simplified string method, which enables us to accurately compute the minimum free energy path for the vortex nucleation. Moreover, we present a study of how the nucleation energy barrier changes in the presence of impurities and surface roughness. 

In Paper 3, Vortex nucleation barriers and stable fractional vortices near boundaries in multicomponent superconductors, we extend the gauged string method to multiband superconductors, where the energy landscape is much broader than in the single band case, and the number of possible processes is higher. In multiband superconductors the topological excitations are fractional vortices, which once bounded, form composite vortices. Fractional vortices are energetically unfavorable, as they are associated to an energy cost which scales logarithmically with the system size. Once they bind and form a composite vortex, the extra energy cost is canceled. However, it was previously shown in the London model that fractional vortices can be stabilized near boundaries. In this paper, we study the energy barriers for the nucleation of fractional vortices, and for the formation composite vortices. Moreover, we show how the presence of anisotropies can influence such barriers. Then we study how the same processes are influenced by the interband Josephson interactions. By using the gauged string method, we demonstrate how the fractionalized nucleation process results in multiple saddle points and intermediate metastable configurations.

In Paper 4, Boundary effects in two-band superconductors, we study microscopically the behavior of the superconducting order parameters near the boundaries of a two-band s-wave superconductor. We describe the system using a tight binding Bardeen Cooper Schrieffer model with interband interaction. We show the existence of surface states, and calculate how the difference between bulk and surface critical temperatures depends on the strength of the interband coupling. Then, we focus the analysis on weak interband interactions to show, at the level of a fully microscopic theory, how the variations of the gaps near the boundaries occur with multiple length scales. 

In Paper 5, Spontaneous edge and corner currents in s+is superconductors and time-reversal-symmetry-breaking surface states, we consider a three band superconductor, described with a microscopic tight binding Bardeen Cooper Schrieffer model with interband interaction. In the current classification scheme, an s+is state is a non-topological and non-chiral state, which does not exhibit topological surface states and therefore no spontaneous surface currents. In the article, we consider a system where the three bands have slightly different intraband pairing potential but the same interband coupling, resulting in slightly asymmetric bands. We show that, as the temperature is increased, the state which spontaneously break time reversal symmetry becomes localized near the sample boundaries, and generate spontaneous magnetic signatures. Finally, we show how, by changing the sample geometry, the magnetic signatures can be enhanced. We underline that, this phenomenon is not a general property of time reversal symmetry breaking states, but can account for the presence of spontaneous magnetic fields in s+is superconductors and cannot be predicted using the macroscopic Ginzburg Landau theory. Moreover, the paper shows that spontaneous surface currents can arise for non-topological reasons.

In Paper 6, Demonstration of CP2 skyrmions in three-band superconductors by self-consistent solutions to a Bogoliubov-de-Gennes model, we continue the study of three component s+is superconductors, described using a microscopic tight binding Bardeen Cooper Schrieffer model. In this work, we consider three symmetric bands, and we study the CP2 skyrmionic topological excitations of the system. We present not only the configurations of the superconducting order parameters, but also the respective magnetic field and density of states. Moreover, the simulation of CP2 skyrmions in superconductors, described a with fully microscopic model, had not been done before. In the context of superconductivity, CP2 skyrmion solutions were previously described only within the phenomenological macroscopic Ginzburg-Landau theory.

In Paper 7, Pair-density-wave superconductivity of faces, edges, and vertices in systems with imbalanced fermions we analyze the boundary effects in superconductors exhibiting Fulde-Ferrell-Larkin-Ovchinnikov states. We do so by employing and comparing Bogoliubov-de-Gennes and Ginzburg Landau formalisms. We show that, within the Ginzburg Landau theory, in a three dimensional superconductor, there is a sequence of phase transitions as the temperature increases. Then, we perform the same sequence of simulations for two dimensional samples described using the Bogoliubov-de-Gennes formalism, showing the same sequence of phase transitions.

In Paper 8, Elevated critical temperature at BCS superconductor-band insulator interfaces, we study the physics of interfaces between a superconductor, described using a tight-binding mean field Hamiltonian, and a band insulator. We limit the study to one-dimensional samples and demonstrate that, within certain parameter ranges, it is indeed possible to enhance the critical temperature in the vicinity of the interface. This occurs without changing the strength of the superconducting-pairing interaction. Then we present the parameters regimes in which the near-interface critical temperature exceeds the critical temperature of a conventional superconductor-vacuum interface.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 85
Series
TRITA-SCI-FOU ; 2022:14
National Category
Condensed Matter Physics
Research subject
Physics, Theoretical Physics
Identifiers
urn:nbn:se:kth:diva-311403 (URN)978-91-8040-216-3 (ISBN)
Public defence
2022-05-24, FR4 and Zoom, Roslagstullsbacken 33, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 220427

Available from: 2022-04-27 Created: 2022-04-27 Last updated: 2022-06-25Bibliographically approved
2. Superconducting surfaces, solitons and skyrmions
Open this publication in new window or tab >>Superconducting surfaces, solitons and skyrmions
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on superconductivity, a field within condensed matter physics which since its experimental discovery roughly a century ago, not only has lead to significant contributions revealing the fundamental theories of physics, but also to practical applications. This includes for example quantum vortices, which play paramount roles both in other condensed matter settings, but also in high-energy physics. The dissipationless currents in superconductors are essential to achieve the strong magnetic fields necessary when performing Magnetic Resonant Imaging (MRI). 

My research on superconductors spans across three topics: superconducting surfaces, multiband superconductivity and inhomogeneous states formed in imbalanced superfluids. A brief introduction and summary of the scientific contribution of this thesis to each of these topics is given below. 

Bardeen-Cooper-Schrieffer (BCS) theory tells us that from a microscopic perspective, superconductivity is the phenomenon of condensation of bound electron pairs, so-called Cooper pairs. The superconducting state is described by a complex-valued field known as the superconducting gap parameter. In the most simple superconducting materials, where there is only one electronic band, only one complex field is necessary to describe the superconducting state, which spontaneously breaks U(1)-symmetry. In other superconducting materials, such as the iron-based superconductor Ba1−xKxFe2As2, the band structure is more complicated and multiple electronic bands are present. Such multiband superconductors may require multiple complex fields to describe the superconducting state, which can spontaneously break other symmetries, such as time-reversal symmetry, in addition to U(1)-symmetry. 

Two proposed pairing symmetries for spontaneous time-reversal symmetry breaking (TRSB) spin-singlet superconductors are s+is and s+id. In Paper IV, we demonstrate how magnetic features of pinned domain walls in anisotropic TRSB superconductors can be used to distinguish between s+is and s+id pairing. 

Classifying topological excitations in superconductors is crucial to understand the superconducting state. For example, quantum vortices are key in understanding the magnetic response of type-II superconductors, and the thermal fluctuations-induced phase transitions in superconductors and superfluids. It has been hypothesized that multiband superconductors, which are described by multiple complex fields, can host topological excitations which are different from the ordinary quantum vortices. Understanding the properties of these new topological excitations carries similar importance to that of ordinary quantum vortices. In Paper VII and Paper VIII, we provide the first microscopic demonstration of multiband fractional vortices and CP2-skyrmions using fully self-consistent Bogoliubov-de Gennes (BdG) theory. Previous demonstrations of such topological excitations have been done using classical field theory approaches, such as Ginzburg-Landau (GL) theory. Our BdG calculations maintain microscopic degrees of freedom which are neglected using GL and quasiclassical theories of superconductivity. 

The most well-known inhomogeneous superconducting phase is the Abrikosov vortex lattice, which forms in the presence of an external magnetic field in type-II superconductors. Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed another type of inhomogeneous superconducting state, which may form in the presence of a sufficiently large population imbalance between spin up and spin down electrons. The origin of this supersolid state is the formation of Cooper pairs with non-zero net momentum due to spin-dependent Fermi surfaces. In Paper V, we show that spin-imbalanced superfluids can host a unique type of solitons, even before the FFLO regime is entered. These solitons are not present in ordinary uniform superconducting states, and can therefore act as identifiable traces of the FFLO state. 

The Fulde-Ferrell state and the Larkin-Ovchinnikov state are characterized respectively by modulation in the phase and the density of the superconducting gap parameter. In Paper II, we explored the possibility of other types of inhomogeneous states caused by imbalance in multiband superconductors. Using GL theory, we demonstrated two new types of inhomogeneous states, characterized by spatially alternating chirality and nematicity. 

Understanding the superconducting properties of surfaces and boundaries is important, both fundamentally to the theory of superconductivity and practically in the construction of superconducting devices. In Paper I and Paper III we demonstrate using both GL and BdG theory that pair-density-wave superconductors support superconducting surface states with critical temperatures larger than the bulk critical temperature. In Paper VI we show increased critical temperatures of superconductor-insulator interfaces. The increase in critical temperature occurs without locally increasing the superconducting pairing strength near the boundaries, or without the introduction of modified surface phonons. 

Abstract [sv]

Den här avhandlingen fokuserar på supraledning, ett forskningsområde inom kondenserade materiens fysik som sedan dess upptäckt för cirka ett sekel sedan har haft stor betydelse både för grundläggande fysik och praktiska tillämpningar. Kvantvirvlar spelar till exempel en viktig roll både inom den kondenserade materiens fysik och högenergifysik. De starka magnetfälten som krävs i magnetkameror genereras tack vare resistansfria supraledare. 

Min forskning inom supraledning berör tre områden: supraledande ytor, flerbandssupraledning och inhomogena tillstånd i suprafluider med obalans. En kort introduktion och sammanfattning av denna avhandlings vetenskapliga bidrag till dessa områden ges nedan. 

Enligt Bardeen-Cooper-Schrieffer-teori uppstår supraledning genom kondensation av bundna elektronpar, så kallade Cooperpar. Det supraledande tillståndet beskrivs av ett komplexvärt fält som kallas det supraledande gapet. I de enklaste supraledarna med enbart ett elektronband behövs endast ett komplexvärt fält för att beskriva det supraledande tillståndet, som spontant bryter U(1)-symmetri. I andra supraledande material vars bandstruktur är mer komplicerad, som till exempel Ba1−xKxFe2As2, kan det behövas flera komplexvärda fält för att beskriva det supraledande tillståndet. Sådana flerbandssupraledare kan spontant bryta andra symmetrier, såsom tidsinversionssymmetri, utöver U(1)-symmetrin. 

s+is och s+id är två parningssymmetrier som föreslagits beskriva spin-singlet-supraledare som spontant bryter tidsinversionssymmetri. I artikel IV visar vi hur magnetfälten som genereras av domänväggar i anisotropa sådana supraledare kan användas för att särskilja de två föreslagna parningssymmetrierna. 

Att identifiera tillåtna topologiska excitationer i supraledare är avgörande för att förstå det supraledande tillståndet. Exempelvis så spelar kvantvirvlar en viktig roll då typ-II-supraledare utsätts för externa magnetfält och vid fasövergångar i supraledare och suprafluider orsakade av termiska fluktuationer. Det har föreslagits att flerbandssupraledare som beskrivs av flera komplexa fält kan inneha topologiska excitationer som skiljer sig från vanliga kvantvirvlar. Dessa topologiska excitationers egenskaper i flerbandssupraledare är lika viktiga som kvantvirvlars egenskaper är i vanliga supraledare. I artikel VII och artikel VIII presenterar vi de första mikroskopiska lösningarna av partiella virvlar och CP2-skyrmioner med hjälp av Bogoliubov-de Gennes (BdG)-teori. Sådana tillstånd har tidigare påvisats genom klassiska fältteorier såsom Ginzburg-Landau (GL)-teori. Våra BdG-beräkningar behåller mikroskopiska frihetsgrader som försummas i GL-teori och kvasiklassiska beskrivningar av supraledning. 

Abrikosovs virveltillstånd, som bildas i typ-II-supraledare i ett externt magnetfält, är det mest välkända inhomogena supraledande tillståndet. Fulde, Ferrell, Larkin och Ovchinnikov (FFLO) lade fram idén att ett annorlunda inhomogent tillstånd kan bildas i supraledare med tillräckligt stor spin-obalans. Detta supersolida tillstånd uppstår då Cooperpar med nollskild rörelsemängd bildas på grund av spin-beroende Fermiytor. I artikel V visar vi att suprafluider med spin-obalans kan inneha en unik typ av solitoner, trots att FFLO-tillståndet inte ännu har nåtts. Dessa solitoner är inte tillåtna i vanliga homogena supraledande tillstånd, och är därför identifierbara spår av FFLO-tillståndet. 

Fulde-Ferrell-tillståndet och Larkin-Ovchinnikov-tillståndet karaktäriseras av modulerad fas respektive amplitud av det supraledande gapet. I artikel II undersöker vi ifall det existerar andra typer av inhomogena tillstånd orsakade av obalans i flerbandssupraledare. Med hjälp av GL-teori hittade vi två nya sorters inhomogena tillstånd som karaktäriseras av rumsligt varierande kiralitet respektive nematicitet. 

Det är viktigt att förstå hur supraledning beter sig vid ytor, både ur ett fundamentalt perspektiv och i praktiken vid konstruktion av supraledande enheter. I artikel I och artikel III visar vi med hjälp av både GL- och BdG-teori att partäthetsvågssupraledare kan ha supraledande yttillstånd vars kritiska temperatur överskrider den supraledande bulkens kritiska temperatur. I artikel VI visar vi förhöjda kritiska temperaturer vid supraledare-isolator-ytskikt. Denna ökning i kritisk temperatur sker utan att lokalt öka parningsstyrkan nära ytskiktet, eller genom att introducera modifierade ytfononer. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 43
Series
TRITA-SCI-FOU ; 2024:20
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-346010 (URN)978-91-8040-903-2 (ISBN)
Public defence
2024-05-13, FA31, Roslagstullsbacken 21, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 2024-04-29

Available from: 2024-04-29 Created: 2024-04-29 Last updated: 2024-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Benfenati, AndreaBarkman, MatsBabaev, Egor

Search in DiVA

By author/editor
Benfenati, AndreaBarkman, MatsBabaev, Egor
By organisation
Condensed Matter Theory
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf