kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Iterative addition of finite Larmor radius effects to finite element models using wavelet decomposition
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.ORCID iD: 0000-0003-4343-6325
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.ORCID iD: 0000-0002-7142-7103
LPP ERM KMS, Plasma Phys Lab, Brussels, Belgium..
LPP ERM KMS, Plasma Phys Lab, Brussels, Belgium..
Show others and affiliations
2020 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 62, no 4, article id 045022Article in journal (Refereed) Published
Abstract [en]

Modeling the propagation and damping of electromagnetic waves in a hot magnetized plasma is difficult due to spatial dispersion. In such media, the dielectric response becomes non-local and the wave equation an integro-differential equation. In the application of RF heating and current drive in tokamak plasmas, the finite Larmor radius (FLR) causes spatial dispersion, which gives rise to physical phenomena such as higher harmonic ion cyclotron damping and mode conversion to electrostatic waves. In this paper, a new numerical method based on an iterative wavelet finite element scheme is presented, which is suitable for adding non-local effects to the wave equation by iterations. To verify the method, we apply it to a case of one-dimensional fast wave heating at the second harmonic ion cyclotron resonance, and study mode conversion to ion Bernstein waves (IBW) in a toroidal plasma. Comparison with a local (truncated FLR) model showed good agreement in general. The observed difference is in the damping of the IBW, where the proposed method predicts stronger damping on the IBW.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2020. Vol. 62, no 4, article id 045022
Keywords [en]
Morlet wavelets, finite element method, ion cyclotron resonance heating, mode conversion, ion Bernstein waves
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-271924DOI: 10.1088/1361-6587/ab6f55ISI: 000521361100001Scopus ID: 2-s2.0-85086036895OAI: oai:DiVA.org:kth-271924DiVA, id: diva2:1425533
Note

QC 20200421

Available from: 2020-04-21 Created: 2020-04-21 Last updated: 2024-12-21Bibliographically approved
In thesis
1. Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
Open this publication in new window or tab >>Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear fusion can provide large amounts of energy from earth-abundant elements,with no carbon emissions and little radioactive waste. For the nuclei to fuse under earth-relevant conditions, temperatures in excess of 100 000 000 °C are needed. At these temperatures, the fuel is in a plasma state. A common method to heat the plasma is ion cyclotron resonance heating (ICRH), where radiofrequency waves are launched from an antenna on the vessel wall into the plasma to resonate with the gyrating ions. Wave propagation and dissipation in hot magnetized plasmas is a nonlocal process, where the plasma response at a given point depends on the particles' cumulative acceleration along their orbits. To quantify how the plasma is heated, numerical simulations are required. This thesis aims to provide a numerical framework that can simulate the coupling of the wave from the antenna to the plasma, the wave propagation and dissipation inside the plasma, as well as the acceleration of individual ions and how they deposit their energy in the plasma. 

To this end, an iterative scheme that adds nonlocal effects to an otherwise local finite element (FE) model is developed. FE models are suitable for modeling irregular geometries and wave coupling through the cold scrape-off layer plasma, but not necessarily the hot core plasma. Examples of nonlocal effects that are added iteratively are mode conversion from the fast magnetosonic wave to the ion Bernstein wave (IBW) and up- and downshift of the parallel wavenumber. Further, the wave solver is coupled to a Fokker-Planck solver that evaluates the effect of ICRH on the ion distribution function. The models presented in this thesis are in 1D or 2D axisymmetry, but are not conceptually different from a generalization to 3D.

Abstract [sv]

Kärnfusion kan producera stora mängder energi från vanligt förekommande grundämnen på jorden utan att släppa ut koldioxid, och ger endast upphov till små mängder radioaktivt avfall. För att atomkärnor ska slås samman under förhållanden som är relevanta för jorden krävs temperaturer som överstiger 100 000 000 °C. Vid dessa temperaturer befinner sig bränslet i ett plasmatillstånd. En vanlig metod för att värma plasman är jon-cyclotronresonans-uppvärmning (ICRH), där radiovågor skickas från en antenn på kärlets vägg in i plasmat för att resonera med de roterande jonerna. Vågutbredning och dissipation i varma magnetiserade plasman är en ickelokal effekt, där plasmats svar i en given punkt beror på partiklarnas ackumulerade acceleration längs deras banor. För att kvantifiera hur ett plasma värms upp krävs numeriska simuleringar. Målet med denna avhandling är att tillhandahålla ett numeriskt ramverk för simulering av koppling av vågen från antennen till plasmat, vågutbredning och dissipation inuti plasmat, samt accelerationen av enskilda partiklar och hur de deponerar sin energi i plasmat.

För att uppnå detta har en iterativ metod som lägger till ickelokala effekter till en i övrigt lokal modell baserad på finita elementmetoden utvecklats. Den finita elementmetoden är lämplig för att modellera oregelbundna geometrier och vågkoppling genom det kalla randplasmat, men inte det varma plasmat i mitten av maskinen. Exempel på ickelokala effekter som läggs till iterativt är modkonvertering från den snabba magnetosoniska vågen till jon-Bernstein-vågen, och upp- och nedskiftet av det parallella vågtalet. Dessutom kopplas våglösaren till en Fokker-Planck-lösare som utvärderar effekten som ICRH har på jonernas fördelningsfunktion. Modellerna som presenteras i avhandlingen är i 1D eller 2D och rotationssymmetriska, men skiljer sig inte konceptuellt från en generalisering till 3D.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xi, 71
Series
TRITA-EECS-AVL ; 2025:9
Keywords
Fusion, Plasma physics, Plasma heating, Tokamak, Ion cyclotron resonance heating, Spatial dispersion
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357971 (URN)978-91-8106-160-4 (ISBN)
Public defence
2025-01-29, https://kth-se.zoom.us/j/67880732648, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241230

Available from: 2024-12-30 Created: 2024-12-21 Last updated: 2025-01-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Vallejos, PabloJonsson, ThomasZaar, BjörnHellsten, Torbjörn

Search in DiVA

By author/editor
Vallejos, PabloJonsson, ThomasZaar, BjörnHellsten, Torbjörn
By organisation
Fusion Plasma Physics
In the same journal
Plasma Physics and Controlled Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf