CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A multi-sector framework for accelerating renewable energy deployment in power, transport and industry
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis. (dESA-ITM)ORCID iD: 0000-0003-0604-9019
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Climate change is the defining issue of our time (United Nations, 2018). Renewable energy, combinedwith energy efficiency, can potentially be the most effective solution to address energy-relatedGreenhouse Gas (GHG) emissions. This work covers global, regional and national strategies to acceleratedeployment of renewable energy in power, transport and industry, using a variety of methodologies toaddress sectoral challenges and account for sectoral specificities. These sectors jointly represented 85%of energy-related emissions in 2016 (IRENA, 2019a).The thesis is structured around four focus areas. Foci 1-3 investigate the key components of an energytransformation jigsaw that looks at key sectors in which renewable energy can be integrated: industry,transport and power. The fourth focus area is informed by the other three and provides key insights forthe necessary institutional setting and changes for the transition to renewable energy to play out.Focus 1: Decarbonising industryIndustry needs a combination of electricity and heat, therefore apart from decarbonising electricity it isalso necessary to decarbonise heat: depending on temperature levels, a combination of solar thermal,heat pumps and most prominently bioenergy can help in decarbonising process heat. In this thesis I focuson the often overlook role of renewable energy in process heat provision. The analysis presented here isglobal in scale and covers all manufacturing sectors, assessing the potential for biomass, as well as solarthermal and heat pumps, to provide the necessary process heat for industry. This, in combination withincreased electrification and the production of hydrogen from renewable power, charts the way in termsof decarbonisation of industry at the global level. Results show that renewables can replace 50% of fossilfuel consumption for industry. In addition to this, decarbonisation of electricity supply can indirectlydecarbonise industry, especially if industrial energy demand is further electrified.Focus 2: Decarbonising transportIn the transport sector, we can replace petroleum fuels with renewable fuels. To date, this has beenachieved mostly with biofuels. In the future, renewables-based hydrogen and its derivatives can also bea significant source of carbon-neutral fuels. Finally, we are witnessing the rise of battery electric vehicles,which can be leveraged to provide flexibility to the power system and integrate more solar and wind,creating a virtuous cycle of more renewables in power and in transport at once. The analysis presentedin this thesis covers both the structural evolution of the automotive sector in Europe, and how the shiftfrom gasoline to diesel in passenger cars would affect the demand for biodiesel as opposed to ethanol,and the impact of battery electric vehicles (EVs) on the power system. In particular, this analysis looks athow EVs can be leveraged to facilitate the integration of large shares of solar and wind into powersystems, with an application to a small island developing state (SIDS) that pledge to go 100% renewableenergy by 2030, Barbados. Sectoral interactions, like the impact of electric vehicles on the power sector,are also crucial in determining a smooth, coordinated transition of the energy sector away from fossilfuels, further improving affordability and reliability of energy services.Focus 3: Transforming the power sector through rapid deployment of solar and windAs the power sector is a fundamental driver for the energy transition, this PhD tackles some of thechallenges related to the use of solar and wind as main sources for power sector decarbonisation. This 

PhD covers methodological aspects on how to perform the necessary planning studies to transform thepower system using solar and wind generation. This methodological planning framework is applied 1) inthe power generation expansion plan for the Republic of Cyprus, as a key contribution to the developmenton the National Energy Roadmap of Cyprus, 2) to the Pacific Small Island Developing State (SIDS) of Samoa,looking at how different studies can translate policy targets into a renewable-based, reliable andaffordable power system, and 3) to the Caribbean SIDS of Barbados, where the power system analysisshows how to link the power sector to the transportation sector to provide mutual benefits from thedecarbonisation of both sectors.Focus 4: The institutional framework for accelerated renewable energy deploymentFor change to happen, especially at the pace and scale required to meet the objectives of the Parisagreement, the institutional framework for the energy sector requires changes. Increased electrificationaccompanied by decarbonisation of the power sector requires significant changes to how electricity isprocured, regulated, traded and financed. In some regions policies and markets should be adjusted orredesigned. In other regions, the absence of unbundled wholesale electricity markets could be initially achallenge but could be turned into an opportunity for an easier, speedier transition implemented by avertically integrated utility, which is the most common model to date in the majority of countries.Institutional frameworks are very specific for each country or, at best, region, and are difficult to transferfrom one context to another; however, they often remain the largest obstacle to an acceleration inrenewable energy deployment.Beyond the power sector, industry is a sector where change is difficult to achieve at speed, as largeinvestments already in place and global competitiveness of products and services make transitionsparticularly difficult. Additionally, industry requires rapid returns, limiting the spectrum of viableinvestments into new processes, which in turn limits energy efficiency potential and the possibility ofadopting renewable energy to replace fossil fuels.For renewables in transport, a precedent has been set by biofuels, as in many regions and countries theyrepresent an important renewable energy resource for decarbonisation of transport. Moving forward,especially for global sectors like shipping and aviation, a broader framework will be required to introducecarbon-neutral fuels at scale.Overall, the goal of this thesis is to provide policy makers with a set of tools and examples that can supportthe development of effective policies and plans for the increased adoption of renewable energy sourcesat the global, regional and national level and spanning transport, industry and the power sector.

Abstract [sv]

Klimatförändringar är den avgörande frågan i vår tid (FN, 2018). Förnybar energi i kombination med energieffektivitet kan vara den mest effektiva lösningen för att hantera energirelaterade växthusgasutsläpp. Detta arbete täcker globala, regionala och nationella strategier för att påskynda utplaceringen av förnybar energi inom kraft, transport och industri, med hjälp av olika metoder för att möta sektoriella utmaningar och redogöra för sektorsspecifika egenskaper. Dessa sektorer representerade tillsammans 85% av energirelaterade utsläpp 2016 (IRENA, 2019a).

Avhandlingen är strukturerad kring fyra fokusområden. Foci 1-3 undersöker nyckelkomponenterna i en energitransformeringspussel som ser ut som nyckelsektorer där förnybar energi kan integreras: industri, transport och kraft. Det fjärde fokusområdet informeras av de andra tre och ger viktiga insikter för nödvändig institutionell inställning och förändringar för övergången till förnybar energi för att leka ut.

 

Fokus 1: Avkarboniseringsindustri

Industrin behöver en kombination av el och värme, därför förutom avgasning av elektricitet är det också nödvändigt att avkarbonisera värme: beroende på temperaturnivåer kan en kombination av solvärme, värmepumpar och mest framstående bioenergi hjälpa till att avkolla processvärme. I den här avhandlingen fokuserar jag på ofta förbisett roll för förnybar energi i processvärmeproduktion. Analysen som presenteras här är global och omfattar alla tillverkningssektorer och bedömer potentialen för biomassa, liksom solvärmepumpar och värmepumpar, för att tillhandahålla den nödvändiga processvärmen för industrin. Detta i kombination med ökad elektrifiering och produktion av väte från förnybara kraftkartor vägen när det gäller avkolning av industrin på global nivå. Resultaten visar att förnybara energikällor kan ersätta 50% av fossil bränsleförbrukning för industrin. Utöver detta kan avkolning av elförsörjningen indirekt avkolla industrin, särskilt om industriell energibehov ytterligare elektrifieras.

 

Fokus 2: Avkolningstransport

Inom transportsektorn kan vi ersätta petroleumsbränslen med förnybara bränslen. Hittills har detta främst uppnåtts med biobränslen. I framtiden kan förnybarbaserat väte och dess derivat också vara en betydande källa för koldioxidneutrala bränslen. Slutligen bevittnar vi ökningen av batterielektriska fordon, som kan utnyttjas för att ge kraftsystemet flexibilitet och integrera mer sol och vind, vilket skapar en dygdig cykel med fler förnybara energikällor i kraft och i en gång. Analysen som presenteras i denna avhandling täcker både den strukturella utvecklingen av fordonssektorn i Europa och hur övergången från bensin till diesel i personbilar skulle påverka efterfrågan på biodiesel i motsats till etanol och påverkan av batterielektriska fordon (EVs) på kraftsystemet. I synnerhet tittar denna analys på hur EV: er kan utnyttjas för att underlätta integrationen av stora andelar av sol och vind i kraftsystem, med en tillämpning på en liten ö-utvecklingsstat (SIDS) som lovar att gå 100% förnybar energi till 2030, Barbados. Sektoriella interaktioner, liksom effekterna av elfordon på kraftsektorn, är också avgörande för att bestämma en smidig, samordnad övergång av energisektorn bort från fossila bränslen, vilket ytterligare förbättrar energitjänsternas överkomliga priser och tillförlitlighet.

 

Fokus 3: Omvandla kraftsektorn genom snabb användning av sol och vind

Eftersom kraftsektorn är en grundläggande drivkraft för energiomgången, hanterar denna doktorsexamen några av de utmaningar som användningen av sol och vind som huvudkällor för avkarbonisering av kraftsektorn har. Denna doktorand behandlar metodologiska aspekter på hur man utför de nödvändiga planeringsstudierna för att transformera kraftsystemet med sol- och vindproduktion. Denna metodiska planeringsram tillämpas 1) i kraftproduktionsutbyggnadsplanen för Republiken Cypern, som nyckelbidrag till utvecklingen av Cyperns nationella energikartaplan, 2) till Samoa, Pacific Small Island Developing State (SIDS), hur olika studier kan översätta politiska mål till förnyelsebaserade, pålitliga och prisvärda kraftsystem, och 3) till Karibiska SIDS i Barbados, där kraftsystemanalysen visar hur man kopplar kraftsektorn till transportsektorn för att ge ömsesidiga fördelar från avkolning av båda sektorerna.

 

Fokus 4: Den institutionella ramen för snabbare distribution av förnybar energi

För att förändringar ska kunna ske, särskilt i den takt och omfattning som krävs för att uppfylla målen i Parisavtalet, krävs den institutionella ramen för energisektorn förändringar. Ökad elektrifiering åtföljd av avkolning av kraftsektorn kräver betydande förändringar av hur el anskaffas, regleras, handlas och finansieras. I vissa regioner bör politik och marknader anpassas eller omformas, i andra regioner kan frånvaron av marknader till en början vara en utmaning men kan förvandlas till en möjlighet till en enklare och snabbare övergång. Institutionella ramar är mycket specifika för varje land eller i bästa fall region och är svåra att överföra från ett sammanhang till ett annat; de är emellertid ofta det största hindret för en acceleration i distributionen av förnybar energi.

Utöver kraftsektorn är industrin en sektor där förändringar är svåra att uppnå snabbt, eftersom stora investeringar som redan finns och globala konkurrenskraft för produkter och tjänster gör övergångar särskilt svåra.

För förnybara energikällor inom transport har biobränslen ett prejudikat, eftersom de i många regioner och länder utgör en viktig förnybar energiresurs för avkolning av transport. För att gå vidare, särskilt för globala sektorer som sjöfart och luftfart, krävs ett bredare ramverk för att införa koldioxidneutrala bränslen i skala.

Sammantaget är målet med den här avhandlingen att ge beslutsfattare en uppsättning verktyg och exempel som kan stödja utvecklingen av effektiv politik och planer för avkolning av energisystemet, minskat på global, regional och nationell nivå och spänner över transport, industri och kraftsektorn.​

 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2020. , p. 88
Series
TRITA-ITM-AVL ; 2020:23
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-273301ISBN: 978-91-7873-549-5 (print)OAI: oai:DiVA.org:kth-273301DiVA, id: diva2:1429885
Public defence
2020-06-08, https://kth-se.zoom.us/webinar/register/WN_73LDRd7wTluzgWYizxWIJA, http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English), Stockholm, 13:30 (English)
Opponent
Supervisors
Available from: 2020-05-14 Created: 2020-05-12 Last updated: 2020-05-28Bibliographically approved
List of papers
1. Renewable Energy Technology integration for the island of Cyprus: A cost-optimization approach
Open this publication in new window or tab >>Renewable Energy Technology integration for the island of Cyprus: A cost-optimization approach
Show others...
2017 (English)In: Energy Journal, ISSN 0195-6574, E-ISSN 1944-9089, Vol. 137, p. 31-41Article in journal (Refereed) Published
Abstract [en]

In light of the ongoing financial crisis, Cyprus is called to transform its energy sector. The high electricity cost has been recognized as a priority issue and authorities on the island are considering several available options to reduce electricity tariffs. A fuel switch from oil to gas, domestic or imported, an electrical cross-border interconnection and a rapid increase in the share of renewable energy are among the major options being considered. Focusing on the power supply of Cyprus, the present study uses a cost-optimization tool to investigate the impact of different combinations of policy decision, resulting in a series of different scenarios, with some common key findings, with the aim of directly informing future energy policy decisions. Results indicate that renewable energy technologies will play a major role regardless the decisions taken. However, a set of enabling regulatory and market changes on the horizon might prevent least-cost deployment of renewables to take place. This study will review the findings and make some recommendations on the achievement of this optimal pathways for the evolution of Cyprus electricity sector.

Place, publisher, year, edition, pages
Elsevier, 2017
Keywords
Renewable energy, cost-optimization, Cyprus, power supply optimisation, scenarios, energy policy, electricity markets, MESSAGE
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:kth:diva-206756 (URN)10.1016/j.energy.2017.07.015 (DOI)000414879400003 ()2-s2.0-85022177452 (Scopus ID)
Note

QC 20171024

Available from: 2017-05-08 Created: 2017-05-08 Last updated: 2020-05-12Bibliographically approved
2. A system dynamics energy model for a sustainable transportation system
Open this publication in new window or tab >>A system dynamics energy model for a sustainable transportation system
2010 (English)In: Proceedings of the 28th International Conference of the System Dynamics Society: July 25 – 29, 2010. Seoul, Korea, Boston, USA, 2010Conference paper, Published paper (Refereed)
Abstract [en]

The transportation sector is one of the most resilient to the shift away from oil. Policies have been put in place in different regions to introduce alternative fuels and reduce the road transportation heavy dependency on oil products and the related environmental impacts; results, however, are in most cases disappointing. The system is resilient and goes back to the historical dichotomy gasoline-diesel. If from a policy maker perspective, a system dynamics model of the automotive sector can lead to the development of effective policies to achieve sustainable mobility, from an energy company perspective, such a model could be used to analyze possible threats and design optimal adaptation strategies for a highly volatile and market that is always on the edge of starting a new major transition. The model here presented can serve both purposes, and the results obtained show how a similar instrument can really make the difference in highly dynamic sectors with ongoing major transitions.

Place, publisher, year, edition, pages
Boston, USA: , 2010
Keywords
System Dynamics, Decision Support System, Energy Crisis, Energy Modeling, Road Transport, Energy Sustainability, Environmental and Energy Policy Evaluation
National Category
Transport Systems and Logistics Bioenergy
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-273300 (URN)978-1-935056-06-5 (ISBN)
Conference
28th International Conference of the System Dynamics Society
Note

QC 20200518

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2020-05-18Bibliographically approved
3. The role of flexibility in achieving a Paris-compatible power system in 2050
Open this publication in new window or tab >>The role of flexibility in achieving a Paris-compatible power system in 2050
(English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118Article in journal (Refereed) Submitted
Abstract [en]

Highlights

-A Paris-compliant power system with 86% renewable share in electricity can be operable

-The key to operability is sufficient flexibility

-To enable existing flexibility markets and regulations need to be adjusted

-Storage, EVs, demand response and hydrogen from electrolysis can provide the necessary flexibility

-Technical constraints can be respected at low cost if all sources of flexibility are operated in an economic-efficient manner

Place, publisher, year, edition, pages
Elsevier
Keywords
power systems, unit commitment and economic dispatch, optimisation, PLEXOS, Paris agreement, decarbonisation, renewable energy, flexibility, global
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Energy Systems
Research subject
Energy Technology; Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-273299 (URN)
Note

QC 20200514

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2020-05-14Bibliographically approved
4. The potential for renewable energy in industrial applications
Open this publication in new window or tab >>The potential for renewable energy in industrial applications
2012 (English)In: Renewable and sustainable energy reviews, ISSN 1364-0321, Vol. 16, no 1, p. 735-744Article in journal (Refereed) Published
Abstract [en]

To date, insufficient attention has been paid to the potential of renewable energy resources in industrial applications. Our analysis suggests that up to 21% of final energy demand and feedstock-use in the manufacturing industry sector could be of renewable origin by 2050, a five-fold increase over current levels in absolute terms. This estimate is considerably higher than other recent global scenario studies. In addition, if a 50% share of renewables in power generation is assumed, the share of direct and indirect renewable energy use rises to 31% in 2050. Our analysis further suggests that bioenergy and biofeedstocks can constitute three-quarters of the direct renewables use in this sector by 2050. The remainder is roughly evenly divided between solar heating and heat pumps. The potential for solar cooling is considered to be limited.

While low-temperature solar process heat can reach cost-effectiveness today in locations with good insolation, some bioenergy applications will require a CO2 price even on the longer term. Biomass feedstock for synthetic organic materials will require a CO2 price up to USD 100/t CO2, or even more if embodied carbon is not considered properly in CO2 accounts. Future fossil fuel prices and bioenergy prices in addition to the development of feedstock commodity markets for biomass will be critical. Decision makers are recommended to pay more attention to the potential for renewables in industry. Finally, we propose the development of a detailed technology roadmap to explore this potential further and discuss key issues that need to be elaborated in such a framework.

Place, publisher, year, edition, pages
Elsevier, 2012
Keywords
Renewable energy, Industrial applications, Process heat, Solar thermal, Bioenergy, Heat pumps
National Category
Energy Engineering
Research subject
Industrial Engineering and Management; Energy Technology
Identifiers
urn:nbn:se:kth:diva-273298 (URN)10.1016/j.rser.2011.08.039 (DOI)000298764500069 ()2-s2.0-82355169515 (Scopus ID)
Note

QC 20200514

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2020-05-14Bibliographically approved
5. Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study
Open this publication in new window or tab >>Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study
2018 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 164, p. 65-78Article in journal (Refereed) Published
Abstract [en]

Rapid deployment of large shares of Variable Renewable Energy (VRE) is driving a shift in economics and operational practices in power systems around the world, creating the need for a more flexible and decentralized power system. In this context, electric vehicles (EVs) are expected to play a significant role, as they can make use of large shares of renewables in the power system to decarbonise the transportation sector. It is important to carefully plan for EV integration to make sure that they facilitate the integration of VRE and capture the potential benefits for the power system. This paper assesses the different impacts on production costs that electric vehicles could have depending on different charging profiles and considering the value added from allowing the EVs to provide energy and ancillary services to the grid. This paper shows how smart charging strategies can 1) limit the total increase in production cost from charging EVs, 2) facilitate VRE integration into the system reducing curtailment 3) affect marginal cost of electricity and 4) reduce the investment needed for grid connected storage, using an innovative approach to calculate the contribution of EVs to system reliability based on the different charging scenario. Finally, the effects of adding a constraint to represent battery degradation due to operation are analysed. This analysis is carried out using as a case study the Caribbean island of Barbados, given the expected large shares of VRE in the future, however it suggests a general framework to assess the impact of EVs in power systems with high shares of VRE. 

Place, publisher, year, edition, pages
Elsevier Ltd, 2018
Keywords
Isolated power systems, PLEXOS, Production cost modelling, Variable renewable energy integration electric vehicles, Vehicle-to-grid, Charging (batteries), Costs, Economics, Electric automobiles, Integration, Investments, Renewable energy resources, Electric Vehicles (EVs), Innovative approaches, Isolated power system, Operational practices, Production cost, Transportation sector, Variable renewable energies, Electric power transmission networks, alternative energy, cost analysis, degradation, electric vehicle, energy efficiency, innovation, investment, smart grid, solar power, strategic approach, wind power, Barbados
National Category
Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-236572 (URN)10.1016/j.energy.2018.08.196 (DOI)000448098600006 ()2-s2.0-85053197040 (Scopus ID)
Note

Export Date: 22 October 2018; Article; CODEN: ENEYD; Correspondence Address: Taibi, E.; International Renewable Energy Agency, IITC, Robert-Schuman-Platz 3, Germany; email: etaibi@irena.org. QC 20181127

Available from: 2018-11-27 Created: 2018-11-27 Last updated: 2020-05-12Bibliographically approved
6. The institutional framework for accelerated renewable energy deployment
Open this publication in new window or tab >>The institutional framework for accelerated renewable energy deployment
2016 (English)In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 98, p. 778-790Article in journal (Refereed) Published
Abstract [en]

When considering renewable energy, Pacific Island Countries (PICs) focus on energy security and affordability as primary benefits. In Melanesia, access to modern energy services represents a major unfinished agenda. To that end, Pacific Energy Ministers have endorsed the Framework for Action on Energy Security in the Pacific (FAESP) in April 2011. The associated implementation plan (IPESP) was developed, however never formally endorsed. PICs have instead taken a pathway towards national energy transition roadmaps. This paper describes the current status of the energy sector in PICs, the main challenges and the barriers to the deployment of renewable energy and the role of international cooperation in accelerating deployment. In the context of this analysis, technology cooperation is treated as the sum of cooperation on “orgware”, software and hardware. These three dimensions are explored in the context of the Pacific energy sector, looking at how development finance (DF) is currently distributed among them. Looking at the key barriers identified and the areas where DF has been focused to date, this paper proposes a framework for removal of barriers to the deployment of renewable energy in the Pacific through more focused use of DF and technical cooperation. The framework identifies key goals, actors, activities, resources necessary and indicators to monitor progress.

Place, publisher, year, edition, pages
Elsevier, 2016
Keywords
Pacific Island Countries, Renewable energy, Technology transfer, Development cooperation
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-273302 (URN)10.1016/j.enpol.2016.03.009 (DOI)000387300300075 ()2-s2.0-84962053134 (Scopus ID)
Note

QC 20200514

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2020-05-14Bibliographically approved
7. Linking Technical Grid Integration Studies with Long-Term Techno-Economic Planning Studies for Isolated Power Grids: Methodological Issues Meet Practical Experience in Small Islands
Open this publication in new window or tab >>Linking Technical Grid Integration Studies with Long-Term Techno-Economic Planning Studies for Isolated Power Grids: Methodological Issues Meet Practical Experience in Small Islands
Show others...
2016 (English)In: International Workshop on Integration of solar power into power systems, Energynautics GmbH, 2016Conference paper, Published paper (Refereed)
Abstract [en]

In many cases long-term techno-economic planning studies, which aim to optimize the total cost of island/isolated power systems, have not taken into account all the costs associated with stable and reliable operation of grids with high shares of photovoltaics (PV). Ascertaining these integration costs requires dedicated grid studies focused on the identification of measures that support PV integration.The measures recommended in grid studies may have direct cost impacts; or require changes to the operational practices of the power system, which in turn, could also impact overall system costs. As a result, long-term techno-economic planning studies could either: fail to identify the actual least cost scenario due to the exclusion of costs associated with the integration of high shares of PV; or result in an expansion scenario that results in a system that cannot be optimally operated.This issue is particularly relevant for islands and small isolated power systems, where the high cost of power generation from diesel has led to a rapid deployment of PV systems while at the same time, the isolated nature of these systems has meant that significant grid integration measures for PV can be required when compared to large and interconnected power systems.This paper proposes a methodology that allows the linking of grid studies focused on the identification of integration measures allowing high shares of PV with long-term techno-economic planning studies in an iterative process. The proposed methodology allows the cost and operational impact of identified integration measure to be reflected in the long-term optimization of power system costs. The methodology is described in detail and applied to the island of Upolu, Samoa in the South Pacific to demonstrate its effectiveness in accounting for integration measures in the optimization of long-term power system costs.

Place, publisher, year, edition, pages
Energynautics GmbH, 2016
Keywords
grid studies, long term techno-economic planning, PV, integration measures, cost optimization, islands
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Energy Technology; Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-273303 (URN)978-3-9816549-3-6 (ISBN)
Conference
6th Solar Integration Workshop
Note

QC 20200518

Available from: 2020-05-12 Created: 2020-05-12 Last updated: 2020-05-18Bibliographically approved

Open Access in DiVA

Emanuele Taibi - PhD Thesis(11429 kB)18 downloads
File information
File name FULLTEXT01.pdfFile size 11429 kBChecksum SHA-512
ff2c0471f6e697b6b0f215ef487d49de26002a2facaf69eaa2741265c4d443705c37198b0e8c2c4f1193142acd8ce58a6f39407b1798b83053eb2215efb7b3d0
Type fulltextMimetype application/pdf

Other links

http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Search in DiVA

By author/editor
Taibi, Emanuele
By organisation
Energy Systems Analysis
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 18 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 171 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf