CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt849",{id:"formSmash:upper:j_idt849",widgetVar:"widget_formSmash_upper_j_idt849",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt850_j_idt852",{id:"formSmash:upper:j_idt850:j_idt852",widgetVar:"widget_formSmash_upper_j_idt850_j_idt852",target:"formSmash:upper:j_idt850:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Exactly solved quantum many-body systems in one dimensionPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2005 (English)Licentiate thesis, comprehensive summary (Other scientific)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH , 2005. , p. vii, 40
##### Series

Trita-FYS, ISSN 0280-316X ; 2005:57
##### National Category

Physical Sciences
##### Identifiers

URN: urn:nbn:se:kth:diva-564ISBN: 91-7178-224-9 (print)OAI: oai:DiVA.org:kth-564DiVA, id: diva2:14443
##### Presentation

2005-12-14, seminarierum 112:028, AlbaNova hus 11, Roslagstullsbacken 11, Stockholm, 10:15
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1159",{id:"formSmash:j_idt1159",widgetVar:"widget_formSmash_j_idt1159",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1167",{id:"formSmash:j_idt1167",widgetVar:"widget_formSmash_j_idt1167",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1173",{id:"formSmash:j_idt1173",widgetVar:"widget_formSmash_j_idt1173",multiple:true});
##### Note

QC 20101130Available from: 2005-12-28 Created: 2005-12-28 Last updated: 2010-11-30Bibliographically approved
##### List of papers

This thesis is devoted to the study of various examples of exactly solved quantum many-body systems in one-dimension. It is divided into two parts: the first provides background and complementary results to the second, which consists of three scientific papers. The first paper concerns a particu- lar extension, corresponding to the root system CN, of the delta-interaction model. We prove by construction that its exact solution, even in the gen- eral case of distinguishable particles, can be obtained by the coordinate Bethe ansatz. We also elaborate on the physical interpretation of this model. It is well known that the delta-interaction is included in a four parameter family of local interactions. In the second paper we interpret these parameters as cou- pling constants of certain momentum dependent interactions and determine all cases leading to a many-body system of distinguishable particles which can be solved by the coordinate Bethe ansatz. In the third paper we consider the so-called rational Calogero-Sutherland model, describing an arbitrary number of particles on the real line, confined by a harmonic oscillator potential and interacting via a two-body interaction proportional to the inverse square of the inter-particle distance. We construct a novel solution algorithm for this model which enables us to obtain explicit formulas for its eigenfunctions. We also show that our algorithm applies, with minor changes, to all extensions of the rational Calogero-Sutherland model which correspond to a classical root system.

1. Exact solutions of two complementary one-dimensional quantum many-body systems on the half-line$(function(){PrimeFaces.cw("OverlayPanel","overlay12207",{id:"formSmash:j_idt1224:0:j_idt1228",widgetVar:"overlay12207",target:"formSmash:j_idt1224:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Generalized local interactions in 1D: solutions of quantum many-body systems describing distinguishable particles$(function(){PrimeFaces.cw("OverlayPanel","overlay12208",{id:"formSmash:j_idt1224:1:j_idt1228",widgetVar:"overlay12208",target:"formSmash:j_idt1224:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Explicit formulae for the eigenfunctions of the N-body Calogero model$(function(){PrimeFaces.cw("OverlayPanel","overlay373098",{id:"formSmash:j_idt1224:2:j_idt1228",widgetVar:"overlay373098",target:"formSmash:j_idt1224:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1889",{id:"formSmash:j_idt1889",widgetVar:"widget_formSmash_j_idt1889",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1944",{id:"formSmash:lower:j_idt1944",widgetVar:"widget_formSmash_lower_j_idt1944",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1945_j_idt1947",{id:"formSmash:lower:j_idt1945:j_idt1947",widgetVar:"widget_formSmash_lower_j_idt1945_j_idt1947",target:"formSmash:lower:j_idt1945:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});