kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pyrolytic biochar stability assessed by chemical accelerating aging method
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2020 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Now that the EU and Sweden have adopted a new climate policy framework to regulate net carbon emission. A new concept, negative CO2 emission, has been considered to neutralize the CO2 generated from necessary consumption of fossil fuel. Biochar, as a pyrolytic product from biomass, can store carbon in a relatively stable way. Therefore, it is one of the most promising and outstanding tools for carbon sink.

Biochar stability, defined as the ratio of remaining carbon in biochar after 100 years, is the most crucial factor when using biochar for carbon storage. So far, various approaches have been proposed to measure and predict biochar stability, such as elemental analysis, proximate analysis, accelerating aging methods. Each method has its pros and cons. The reliability of these methods still needs to be verified. In this project, the chemical accelerating aging method has been selected for assessing biochar stability, because this method captures both chemical and physical properties of biochar. Besides, the gas, liquid, and solid products generalized during the chemical treatment are collected and analyzed separately in order to study the oxidation mechanism.

Biochar in this project is produced from miscanthus and seaweed at various pyrolysis temperature. It is found that biochar stability can be increased by enhancing pyrolysis temperature, and miscanthus biochar is more sensitive to pyrolysis temperature within the pyrolysis temperature range of 350-600℃. The highest biochar stability (73%) has been achieved with miscanthus-derived biochar produced at 550 ℃, which demonstrates high potential as carbon sequestration tool.

Abstract [sv]

Nu när EU och Sverige har antagit en ny klimatpolitisk ram för att reglera nettokoldioxidutsläppen. Ett nytt koncept, negativt koldioxidutsläpp, har ansetts neutralisera den koldioxid som genereras av nödvändig förbrukning av fossila bränslen. Biokol, som en pyrolytisk produkt från biomassa, kan lagra kol på ett relativt stabilt sätt. Därför är det en av de mest lovande och enastående verktyg för kolsänka.

Biokolsstabilitet, definierad som förhållandet mellan återstående kol i biokol efter 100 år, är den viktigaste faktorn vid användning av biokol för kollagring. Hittills har olika metoder föreslagits för att mäta och förutsäga biokolsstabilitet, såsom elementär analys, proximate analys, accelererande åldrande metoder. Varje metod har sina för-och nackdelar. Tillförlitligheten hos dessa metoder måste fortfarande kontrolleras. I detta projekt har den kemiska accelererande åldrandemetoden valts ut för att bedöma biokolsstabilitet, eftersom denna metod fångar upp både kemiska och fysikaliska egenskaper hos biokol. Förutom, gasen, flytande, och fasta produkter generaliserade under den kemiska behandlingen samlas in och analyseras separat för att studera oxidation mekanism.

Biokol i detta projekt framställs av miscanthus och tång vid olika pyrolystemperatur. Det visar sig att biokolsstabiliteten kan ökas genom att öka pyrolystemperaturen, och miscanthusbiokol är mer känsligt för pyrolystemperatur inom pyrolystemperaturområdet 350-600°C. Den högsta biokolsstabiliteten (73%) har uppnåtts medbiokol som framställts vid 550°C och som visar stor potential som kolbindningsverktyg.

Place, publisher, year, edition, pages
2020. , p. 35
Series
TRITA-ITM-EX ; 2020:434
National Category
Other Materials Engineering Bioenergy
Identifiers
URN: urn:nbn:se:kth:diva-277933OAI: oai:DiVA.org:kth-277933DiVA, id: diva2:1450941
Subject / course
Materials and Process Design
Educational program
Master of Science - Engineering Materials Science
Supervisors
Examiners
Available from: 2020-07-02 Created: 2020-07-02 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(1335 kB)313 downloads
File information
File name FULLTEXT01.pdfFile size 1335 kBChecksum SHA-512
b33d818bbe7368d656b677ca39fbe36d9b145e19b378b4593c727cfbf8db94e98cec2b19b910688f48a0f11fa1225764d87fb26d585d06a95597ca704be0997b
Type fulltextMimetype application/pdf

By organisation
Materials Science and Engineering
Other Materials EngineeringBioenergy

Search outside of DiVA

GoogleGoogle Scholar
Total: 313 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 378 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf