kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monitoring lithospheric motions by Satellite geodesy
KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.ORCID iD: 0000-0002-7727-0530
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding of global and local Earth’s dynamic processes is of great importance to the Earth’s system knowledge, human life, and sustainability goals (e.g. climatic change and geo-hazard assessment, etc.). The processes are largely affected by the Earth's mass distribution and redistribution, which can be quantified and modelled using simultaneous and complementary data from various geoscience and environmental near earth-orbiting artificial satellites. In this thesis, which is based on five peer-reviewed papers, we study the lithospheric motion and the Earth’s mass change in terms of gravity variation, using a combination of geodetic satellite data and non-geodetic observations.

 

The first paper is concerned with using of gravimetric approach to model sub-crustal horizontal stresses in the Earth’s mantle and their temporal changes using the Gravity Recovery and Climate Experiment (GRACE) data, caused by geodynamical processes such as mantle convection, in Fennoscandia region. We show that the determined horizontal stresses obtained by a gravimetric method are consistent with tectonics and seismic activities. In addition, the secular rate of change of the horizontal stress, which is within 95 kPa/year, is larger outside the uplift dome than inside in the study area.

 

In the second paper, permafrost thawing and its associated gravity change, in terms of groundwater storage (GWS) anomalies changes is studied using the GRACE data and other satellites (e.g. AIRS) and ground-based observations in the northern high-latitude regions. The results of a preliminary numerical analysis reveal a high correlation between the secular trends of greenhouse gases (CO2), temperature, and the equivalent water thickness in the selected regions. Furthermore, the GRACE-based GWS estimates attributed to the permafrost thawing is increased at the annual rates of 3 to 4 cm/year in selected study areas.

 

The third paper investigates the large-scale GRACE-based GWS changes together with different hydrological models over the major oil reservoirs in Sudan. The outcomes are correlated with the available oil wells production data. Moreover, using the freely available Sentinel-1 data, the ground surface deformation associated with oil and water depletion is studied. Our results show that there is a significant correlation between the GRACE-based GWS anomalies and the extracted oil and water volumes. The trend of GWS anomaly changes due to water and oil depletion varies from -18.5 ± 6.3 to -6.2 ± 1.3 mm/year using the CSR GRACE monthly solutions and the best tested hydrological model in this study. Moreover, our Sentinel-1 Synthetic Aperture Radar (SAR) data analysis using Persistent Scatterer Interferometry (PSI) method shows high rate of subsidence, i.e. -24.5 ± 0.85, -23.8 ± 0.96, -14.2 ± 0.85 and -6 ± 0.88 mm/year, over the selected study area.

In the fourth paper, a combined Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the lithosphere and seismic activities in the study area (which includes East Africa, Egypt, Congo and Saudi Arabia). Our results show that isostatic equilibrium and compensation state are closely correlated to the seismicity patterns in the study area. This paper presents a method to determine the crustal thickness and crust-mantle density contrast, and consequently one can detect low-density contrast (about 200 kg/m3) and thin crust (about 30 km) near the triple junction plate tectonics in East Africa (Afar triple junction), which confirms the state of over-compensation in the rift valley areas. Furthermore, the density contrast structure of the crust-mantle shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution across East Africa.

 

The fifth and last paper investigates the ground surface deformation of Gävle city in Sweden using Sentinel-1 data and PSI technique, as well as analyzing the historical leveling data. The PSI technique is used to map the location of risk zones, and their ongoing subsidence rate. Our PSI analysis reveals that the centre of Gävle city is relatively stable with minor deformation ranging between -2.0 mm/year and +2.0 mm/year in the vertical and East-West components. Furthermore, the land surface toward the northeast of the city is significantly subsiding with an annual rate of about -6 mm/year. The comparison at sparse locations shows a close agreement between the subsidence rates obtained from precise leveling and PSI results. The regional quaternary deposit distribution was correlated with PSI results, and it shows that the subsidence areas are mostly located in zones where the sub-surface layer is marked by artificial fill materials.

Abstract [sv]

Förståelsen av globala och lokala dynamiska processer på jorden har stor betydelse för vår kännedom om olika förlopp av betydelse för liv och hållbarhetsmål på planeten (t.ex. klimatförändringar, geo-riskbedömning, etc.). Processerna påverkas till stor del av jordens olika typer av massfördelning och dessas förändringar i tiden, som kan kvantifieras och modelleras med hjälp av samtidiga och kompletterande data från olika vetenskaper, särskilt geovetenskaper som utnyttjar artificiella satelliter. I denna avhandling, som är baserad på fem vetenskapligt granskade artiklar, studerar vi massförändringar i litosfären (dvsjordskorpan och övre manteln) och även deformationer i skorpan som registreras som tyngdkraftsvariationer i kombinationer med data från bl.a. geodetiska satelliter.I den första uppsatsen studeras horisontella tektoniska spänningar i jordens mantel i Fennoscandia och dessas förändringar i tiden orsakade av geodynamiska processer med hjälp av data från satellitprojektet Gravity Recovery and Climate Experiment (GRACE). Vi visar att de beräknade spänningarna överensstämmer med de tektoniska och seismiska aktiviteterna. Den sekulära förändringshastigheten för den horisontella spänningen, som ligger inom 95 kPa/år, visar sig vara större utanför landhöjningskupolen än inne i studieområdet.I den andra uppsatsen studeras avsmältningen av permafrost i polartrakterna och de tyngdkraftsförändringar som därav följer i termer av förändringar av grundvattenlagring (ΔGWS). Även här används GRACE-data, men också observationer från andra satelliter och markbaserade instrument i de nordliga polartrakterna. Resultaten av en preliminär numerisk analys avslöjar en hög korrelation mellan de sekulära trenderna för växthusgasen CO2, temperatur och ekvivalent vattennivåni de utvalda regionerna. Vidare ökar de GRACE-baserade GWS-uppskattningarna, som hänför sig till permafrostens avsmältning, med hastigheter av 3 -4 cm/år.Den tredje artikeln undersöker de storskaliga GWS-förändringarna baserade på data från GRACE och olika hydrologiska modeller över de stora oljereservoarerna i Sudan. Resultaten är korrelerade med tillgängliga produktionsdata för oljebrunnar. Med användning av fritt tillgängliga data från satelliten Sentinel-1 studeras dessutom deformationsytan på marken, som är förknippad med olje-och vattenutarmning. Våra resultat visar att det finns en signifikant korrelation mellan de GRACE-baserade GWS-avvikelserna ochde extraherade olje-och vattenvolymerna. Trenden med ΔGWS-förändringar på grund av uttagen av vatten och olja varierar mellan -18,5 ± 6,3 och -6,2 ± 1,3 mm/år med månadsuppgifterna från Center for Space Research GRACE-lösningar och den bästa testade hydrologiska modellen i denna studie. Dessutom visar

ivvår analys av data från Sentinel-1 Synthetic Aperture Radar (SAR) vid användning av metoden Persistent Scatterer Interferometry (PSI) att markytan i området sjunker med en hastighet av mellan -24,5 ± 0,85 och -6± 0,88 mm/år.I den fjärde artikeln beräknas en kombinerad Moho-modell med seismik-och tyngdkrafts-data. Syftet är att undersöka sambandet mellan litosfärens isostatiska tillstånd och seismisk aktivitet i Östafrika, Egypten, Kongo och Saudiarabien. Resultaten visar att isostatisk balans och kompensationstillstånd är nära korrelerade med seismicitetens mönster i regionen. Artikel presenterar en metod för att bestämma jordskorpans tjocklek och densistetskontrasten mellan skorpa och mantel. Vi finner enlåg densitetskontrast om cirka 200 kg/m3och en tunn skorpa om cirka 30 km i området Afar i Östafrika, där tre kontinentalplattor glider isär (”triple junction”), som bekräftar tillståndet för överkompensation i riftdals-områdena. Dessutom är densitetskontrasten kraftigt korrelerad med jordbävningsaktiviteten, spänningar i manteln samt och vulkanfördelningen i Östafrika.Den femte och sista uppsatsen undersöker markytans deformation över Gävle stad i Sverige med hjälp av Sentinel-1 data och PSI teknik, och analyserar även historiska avvägningsdata. PSI-tekniken används för att kartlägga platsen för riskzoner och pågående sättningar.Vår PSI-analys visar att Gävle centrum är relativt stabilt med mindre deformationer som sträcker sig mellan -2,0 mm/åroch +2,0 mm/åri vertikalaochöst-västriktningar. Däremot sjunker markytan nordost om staden med en årlig hastighet om cirka -6mm/år. Jämförelser visaren nära överensstämmelse mellan markytans sättning erhållen med finavvägning och PSI. De regionala geologiska uppgifternajämfördes med PSI-resultaten, och resultatet visar att områdena där marken sjunker mestadels är belägna i zoner där massorna under markytan är markerade med konstgjorda fyllmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 89
Series
TRITA-ABE-DLT ; 2023
National Category
Earth and Related Environmental Sciences
Research subject
Geodesy and Geoinformatics, Geodesy
Identifiers
URN: urn:nbn:se:kth:diva-279064ISBN: 978-91-7873-586-0 (print)OAI: oai:DiVA.org:kth-279064DiVA, id: diva2:1457770
Public defence
2020-09-18, Via Zoom - https://kth-se.zoom.us/j/61137168081, Du som saknar dator/datorvana kan kontakta mohbag@kth.se för information / Use the e-mail address if you need technical assistance, Stockholm, 10:00
Opponent
Supervisors
Note

QC 20200827

Available from: 2020-08-27 Created: 2020-08-12 Last updated: 2022-06-26Bibliographically approved
List of papers
1. A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia
Open this publication in new window or tab >>A gravimetric method to determine horizontal stress field due to flow in the mantle in Fennoscandia
2019 (English)In: GEOSCIENCES JOURNAL, ISSN 1226-4806, Vol. 23, no 3, p. 377-389Article in journal (Refereed) Published
Abstract [en]

Mass changes and flow in the Earth's mantle causes the Earth's crust not only to move vertically, but also horizontally and to tilt, and produce a major stress in the lithosphere. Here we use a gravimetric approach to model sub-lithosphere horizontal stress in the Earth's mantle and its temporal changes caused by geodynamical movements like mantle convection in Fennoscandia. The flow in the mantle is inferred from tectonics and convection currents carrying heat from the interior of the Earth to the crust. The result is useful in studying how changes of the stress influence the stability of crust. The outcome of this study is an alternative approach to studying the stress and its change using forward modelling and the Earth's viscoelastic models. We show that the determined horizontal stress using a gravimetric method is consistent with tectonics and seismic activities. In addition, the secular rate of change of the horizontal stress, which is within 95 kPa/year, is larger outside the uplift dome than inside.

Place, publisher, year, edition, pages
GEOLOGICAL SOCIETY KOREA, 2019
Keywords
horizontal stress, mantle convection, mass change, stress field, tectonics
National Category
Geophysics
Identifiers
urn:nbn:se:kth:diva-254006 (URN)10.1007/s12303-018-0046-8 (DOI)000469221700002 ()2-s2.0-85054552297 (Scopus ID)
Note

QC 20190814

Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2024-03-18Bibliographically approved
2. Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions
Open this publication in new window or tab >>Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions
2019 (English)In: Acta Geophysica, ISSN 1895-6572, E-ISSN 1895-7455, Vol. 67, no 2, p. 721-734Article in journal (Refereed) Published
Abstract [en]

There is an exceptional opportunity of achieving simultaneous and complementary data from a multitude of geoscience and environmental near-earth orbiting artificial satellites to study phenomena related to the climate change. These satellite missions provide the information about the various phenomena, such as sea level change, ice melting, soil moisture variation, temperature changes and earth surface deformations. In this study, we focus on permafrost thawing and its associated gravity change (in terms of the groundwater storage), and organic material changes using the gravity recovery and climate experiment (GRACE) data and other satellite- and ground-based observations. The estimation of permafrost changes requires combining information from various sources, particularly using the gravity field change, surface temperature change, and glacial isostatic adjustment. The most significant factor for a careful monitoring of the permafrost thawing is the fact that this process could be responsible for releasing an additional enormous amount of greenhouse gases emitted to the atmosphere, most importantly to mention carbon dioxide (CO2) and methane that are currently stored in the frozen ground. The results of a preliminary numerical analysis reveal a possible existence of a high correlation between the secular trends of greenhouse gases (CO2), temperature and equivalent water thickness (in permafrost active layer) in the selected regions. Furthermore, according to our estimates based on processing the GRACE data, the groundwater storage attributed due to permafrost thawing increased at the annual rates of 3.4, 3.8, 4.4 and 4.0cm, respectively, in Siberia, North Alaska and Canada (Yukon and Hudson Bay). Despite a rather preliminary character of our results, these findings indicate that the methodology developed and applied in this study should be further improved by incorporating the in situ permafrost measurements.

Place, publisher, year, edition, pages
SPRINGER INTERNATIONAL PUBLISHING AG, 2019
Keywords
Climate change, Permafrost, Gravity, Grace, Greenhouse gas
National Category
Climate Research
Identifiers
urn:nbn:se:kth:diva-251210 (URN)10.1007/s11600-019-00276-4 (DOI)000463780000022 ()2-s2.0-85062782688 (Scopus ID)
Note

QC 20190527

Available from: 2019-05-27 Created: 2019-05-27 Last updated: 2022-06-26Bibliographically approved
3. Satellite Monitoring of Mass Changes and Ground Subsidence in Sudan's Oil Fields Using GRACE and Sentinel-1 Data
Open this publication in new window or tab >>Satellite Monitoring of Mass Changes and Ground Subsidence in Sudan's Oil Fields Using GRACE and Sentinel-1 Data
2020 (English)In: Remote Sensing, E-ISSN 2072-4292, Vol. 12, no 11, article id 1792Article in journal (Refereed) Published
Abstract [en]

Monitoring environmental hazards, owing to natural and anthropogenic causes, is an important issue, which requires proper data, models, and cross-validation of the results. The geodetic satellite missions, for example, the Gravity Recovery and Climate Experiment (GRACE) and Sentinel-1, are very useful in this respect. GRACE missions are dedicated to modeling the temporal variations of the Earth's gravity field and mass transportation in the Earth's surface, whereas Sentinel-1 collects synthetic aperture radar (SAR) data, which enables us to measure the ground movements accurately. Extraction of large volumes of water and oil decreases the reservoir pressure and form compaction and, consequently, land subsidence occurs, which can be analyzed by both GRACE and Sentinel-1 data. In this paper, large-scale groundwater storage (GWS) changes are studied using the GRACE monthly gravity field models together with different hydrological models over the major oil reservoirs in Sudan, that is, Heglig, Bamboo, Neem, Diffra, and Unity-area oil fields. Then, we correlate the results with the available oil wells production data for the period of 2003-2012. In addition, using the only freely available Sentinel-1 data, collected between November 2015 and April 2019, the ground surface deformation associated with this oil and water depletion is studied. Owing to the lack of terrestrial geodetic monitoring data in Sudan, the use of GRACE and Sentinel-1 satellite data is very valuable to monitor water and oil storage changes and their associated land subsidence over our region of interest. Our results show that there is a significant correlation between the GRACE-based GWS anomalies (Delta GWS) and extracted oil and water volumes. The trend of Delta GWS changes due to water and oil depletion ranged from -18.5 +/- 6.3 to -6.2 +/- 1.3 mm/year using the CSR GRACE monthly solutions and the best tested hydrological model in this study. Moreover, our Sentinel-1 SAR data analysis using the persistent scatterer interferometry (PSI) method shows a high rate of subsidence, that is, -24.5 +/- 0.85, -23.8 +/- 0.96, -14.2 +/- 0.85, and -6 +/- 0.88 mm/year over Heglig, Neem, Diffra, and Unity-area oil fields, respectively. The results of this study can help us to control the integrity and safety of operations and infrastructure in that region, as well as to study the groundwater/oil storage behavior.

Place, publisher, year, edition, pages
MDPI AG, 2020
Keywords
groundwater, GRACE, hydrological model, oil depletion, land subsidence, InSAR
National Category
Remote Sensing
Identifiers
urn:nbn:se:kth:diva-278633 (URN)10.3390/rs12111792 (DOI)000543397000097 ()2-s2.0-85086427019 (Scopus ID)
Note

QC 20200723

Available from: 2020-07-23 Created: 2020-07-23 Last updated: 2023-08-28Bibliographically approved
4. A study on the relationship between isostatic equilibrium and seismicity: A case study in Africa
Open this publication in new window or tab >>A study on the relationship between isostatic equilibrium and seismicity: A case study in Africa
(English)In: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670Article in journal (Other academic) Submitted
Abstract [en]

The principle of isostasy plays an important role in understanding the relationship between the geodynamic processes. It is difficult to find an exact method that delivers a complete image of the Earth structure, gravimetric and seismic methods can provide images of the interior of the Earth. The Earth’s crust parameters, i.e. crustal depth and crust-mantle density contrast, can reveal information about the solid Earth system e.g. earthquakes and continental rifting processes. In this study, a combined Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the crust and seismic activities in our study area in Africa. To do this we determine the isostatic gravity disturbance and the density contrast. Our results show that isostatic equilibrium and compensation states are closely correlated to the seismicity patterns in the study area. This paper presents a method to determine the crustal thickness and crust-mantle density contrast and consequently one can detect low-density contrasts (about 200 kg/m3) and thin crust (about 30 km) near the Afar Triangle, which confirms the state of over-compensation. Furthermore, the density structure of the mantle lithosphere shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution.

Keywords
Compensation; Crustal thickness; Density contrast; Earthquake; Isostatic equilibrium; Moho; Rift valley
National Category
Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-279038 (URN)
Note

QC 20200916

Available from: 2020-08-12 Created: 2020-08-12 Last updated: 2022-06-26Bibliographically approved
5. Localized subsidence zones in Gävle City detected by Sentinel-1 PSI and Leveling data
Open this publication in new window or tab >>Localized subsidence zones in Gävle City detected by Sentinel-1 PSI and Leveling data
2020 (English)In: Remote Sensing, E-ISSN 2072-4292Article in journal (Refereed) Accepted
Place, publisher, year, edition, pages
Basel: MDPI, 2020
Keywords
Deformation; Geology; Gävle; InSAR; PSI; Precise levelling; Sentinel-1; Subsidence; Sweden
National Category
Engineering and Technology
Research subject
Geodesy and Geoinformatics, Geodesy
Identifiers
urn:nbn:se:kth:diva-279035 (URN)
Note

QC 20200916

Available from: 2020-08-12 Created: 2020-08-12 Last updated: 2023-08-28Bibliographically approved

Open Access in DiVA

fulltext(4840 kB)606 downloads
File information
File name FULLTEXT01.pdfFile size 4840 kBChecksum SHA-512
d6ef2a20cf8bc3fc9d417453111b01b6788a93c62ffc39250f28905a905e1c2e2427dd9551f7c5ee02875d44a56864bfe5202d989fa10292ea917cb3bb8dca67
Type fulltextMimetype application/pdf

Authority records

Gido, Nureldin A. A.

Search in DiVA

By author/editor
Gido, Nureldin A. A.
By organisation
Geodesy and Satellite Positioning
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 606 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 855 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf