kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strong reinforcement effects in 2D cellulose nanofibril-graphene oxide (CNF-GO) nanocomposites due to GO-induced CNF ordering
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-4165-4353
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Chalmers Univ Technol, Dept Ind & Mat Sci, Rannvagen 2, S-41296 Gothenburg, Sweden..ORCID iD: 0000-0001-8840-1172
Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Via Teresa Michel 5, I-15121 Alessandria, Italy..
Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Via Teresa Michel 5, I-15121 Alessandria, Italy..
Show others and affiliations
2020 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 8, no 34, p. 17608-17620Article in journal (Refereed) Published
Abstract [en]

Nanocomposites from native cellulose with low 2D nanoplatelet content are of interest as sustainable materials combining functional and structural performance. Cellulose nanofibril-graphene oxide (CNF-GO) nanocomposite films are prepared by a physical mixing-drying method, with a focus on low GO content, the use of very large GO platelets (2-45 mu m) and nanostructural characterization using synchrotron X-ray source for WAXS and SAXS. These nanocomposites can be used as transparent coatings, strong films or membranes, as gas barriers or in laminated form. CNF nanofibrils with random in-plane orientation, form a continuous non-porous matrix with GO platelets oriented in-plane. GO reinforcement mechanisms in CNF are investigated, and relationships between nanostructure and suspension rheology, mechanical properties, optical transmittance and oxygen barrier properties are investigated as a function of GO content. A much higher modulus reinforcement efficiency is observed than in previous polymer-GO studies. The absolute values for modulus and ultimate strength are as high as 17 GPa and 250 MPa at a GO content as small as 0.07 vol%. The remarkable reinforcement efficiency is due to improved organization of the CNF matrix; and this GO-induced mechanism is of general interest for nanostructural tailoring of CNF-2D nanoplatelet composites.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2020. Vol. 8, no 34, p. 17608-17620
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:kth:diva-282261DOI: 10.1039/d0ta04406gISI: 000566092600024PubMedID: 33796318Scopus ID: 2-s2.0-85090791547OAI: oai:DiVA.org:kth-282261DiVA, id: diva2:1484892
Note

QC 20201030

Available from: 2020-10-30 Created: 2020-10-30 Last updated: 2022-08-31Bibliographically approved
In thesis
1. Two-dimensional Nanocomposites Based on Cellulose Nanofibrils and Graphene Oxide
Open this publication in new window or tab >>Two-dimensional Nanocomposites Based on Cellulose Nanofibrils and Graphene Oxide
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Two-dimensional (2D) nanocomposites based on cellulose nanofibrils (CNF) and 2D nanomaterials are of interest as sustainable materials combining functional and structural properties. To achieve reinforcement effects from 2D nanomaterials, their orientation and dispersion state in the CNF matrix are important. In this thesis, nanocomposites based on CNF and graphene oxide (GO) platelets are investigated. The focus is on understanding nanostructure-property relationships, reinforcement mechanisms and interfacial molecular interactions. For this purpose, experimental investigations are combined with molecular dynamics (MD) simulations. 

CNF-GO nanocomposite nanopapers with different GO content are prepared using vacuum filtration of stable hydrocolloid dispersions, followed by drying. Nanostructure and physical and mechanical properties are investigated. Even a small, “homeopathic” amount of large aspect ratio GO platelets (0.07 vol%) is shown to induce ordering in the CNF matrix resulting in strong property improvement. In order to add an additional functionality to such nanocomposites, the GO in CNF-GO wet cake (after vacuum filtration) is chemically reduced to reduced graphene oxide (RGO). The main idea is to preserve the homogeneous distribution of GO in the CNF matrix and then reduce GO to RGO to achieve electrical conductivity together with mechanical reinforcement. The mechanical properties are very high. Effects from moisture on the mechanical performance of CNF-RGO nanocomposite are also studied and compared to CNF-GO and neat CNF films. Although CNF-GO adsorbs more moisture, it shows higher tensile strength at 90% relative humidity (RH) compared to CNF-RGO and neat CNF. Moisture effects on molecular interactions at CNF-GO interface were further studied by MD simulations. Dry interfaces are formed even in water-soaked conditions. The reason is that the system gains entropy as trapped interfacial water diffuses to form bulk water. The CNF-GO interface shows higher interfacial shear strength than CNF-graphene or RGO, because of higher hydrogen bond density. This may contribute to the higher strength for CNF-GO compared with CNF-RGO, despite higher moisture content for CNF-GO at 90% RH.

Abstract [sv]

Tvådimensionella(2D) nanokompositer baserade på nanofibriller från cellulosa (CNF) och 2D nanomaterial är av intresse som hållbara material som har både funktionella och strukturella egenskaper. För att uppnå förstärkningseffekter från 2D-flak är deras orientering och fördelning i CNF-matrisen viktiga. I denna avhandling undersöks nanokompositer baserade på CNF och grafenoxid (GO). Fokus ligger på att förstå relationer mellan nanostruktur och fysikaliska egenskaper, liksom förstärkningsmekanismer och molekylära växelverkningar i gränsytan CNF-GO. För detta ändamål kombineras experimentella undersökningar med molekylärdynamisk (MD) simulering. 

CNF-GO filmer med olika GO-innehåll framställs med hjälp av vakuumfiltrering av stabila hydrokolloid-dispersioner, följt av torkning. Nanostruktur, fysikaliska och mekaniska egenskaper undersöks. Även en liten, "homeopatisk" mängd stora GO-flak (0.07 vol%) förbättrar orienteringen av CNF, vilket resulterar i stark egenskapsförbättring. För att lägga till ytterligare funktionalitet till sådana nanokompositer reduceras GO på kemisk väg i en våt kaka av CNF-GO (efter vakuumfiltrering) så att GO bildar reducerad grafenoxid (RGO). Huvudidén är att bevara den homogena fördelningen av GO i CNF-matrisen och sedan reducera GO till RGO för att uppnå elektrisk ledningsförmåga tillsammans med mekanisk förstärkning. De mekaniska egenskaperna är mycket höga. Effekter från fukt på mekanisk prestanda hos CNF-RGO nanokomposit studeras också och jämförs med CNF-GO och CNF-filmer. Även om CNF-GO adsorberar mer fukt, visar den högre draghållfasthet vid 90% RH jämfört med CNF-RGO och CNF. Fukteffekter på molekylära interaktioner vid gränsytan CNF-GO studerades ytterligare genom MD-simuleringar. Torra gränsytor bildas även under fuktiga förhållanden. Anledningen är att systemets entropi ökar när instängt, adsorberat vatten i gränsytan diffunderar ut och bildar högrörligt vatten i vätskeform. Gränsytan CNF-GO-gränssnittet visar högre skjuvhållfasthet än CNF-grafen eller CNF-RGO, på grund av högre densitet av vätebindningar. Detta kan bidra till högre hållfasthet för CNF-GO jämfört med CNF-RGO vid 90% RH, trots högre fukthalt för CNF-GO. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 66
Series
TRITA-CBH-FOU ; 2022:40
Keywords
Cellulose nanofibrils, graphene oxide, orientation, reinforcement, oxygen barrier, bio-nanocomposite, moisture, molecular adhesion, interfacial shear strength., Nanocellulosa, grafenoxid, orientering, förstärkning, syrebarriär, bionanokomposit, fukt, molekylär adhesion, skjuvhållfasthet hos gränsytan.
National Category
Engineering and Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-316824 (URN)978-91-8040-318-4 (ISBN)
Public defence
2022-09-30, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-09-02

Available from: 2022-09-02 Created: 2022-08-31 Last updated: 2022-12-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mianehrow, HaniehLo Re, GiadaLarsson, Per TomasChen, PanBerglund, Lars

Search in DiVA

By author/editor
Mianehrow, HaniehLo Re, GiadaLarsson, Per TomasChen, PanBerglund, Lars
By organisation
BiocompositesWallenberg Wood Science CenterFibre Technology
In the same journal
Journal of Materials Chemistry A
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 219 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf