kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT)
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium.
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0003-2151-8741
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0001-8699-7910
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium.
2020 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 135, no 105930, article id https://doi.org/10.1016/j.compositesa.2020.105930Article in journal, Editorial material (Refereed) Published
Abstract [en]

In this study, the back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT) were investigated. The back calculated stress-strain response can be described by the Ramberg-Osgood model. The compressive modulus of the fiber is similar to its tensile modulus. The compressive strength of the fiber is approximately 45 % of its tensile strength. Considering the presence of local fiber kinking within the elementary fibers as well as global fiber kinking due to fiber misalignments and plastic shear deformation in the matrix material, this is a remarkably high value for the compressive strength. Our results indicate that local fiber kinking precedes global fiber kinking. We show that IFBT is a promising method for determining the compressive properties of flax fibers and provides necessary input data for finite element analysis of the compressive failure mechanisms in unidirectional flax fiber reinforced composites.

Place, publisher, year, edition, pages
Stockholm: Elsevier BV , 2020. Vol. 135, no 105930, article id https://doi.org/10.1016/j.compositesa.2020.105930
Keywords [en]
Biocomposite, Cellulose, Fibres, Natural fibers, Buckling, Fibre deformation, Mechanical properties, Plastic deformation, Mechanical testing, Compressive properties, Flax fibers
National Category
Composite Science and Engineering
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-284794DOI: 10.1016/j.compositesa.2020.105930ISI: 000537831600004Scopus ID: 2-s2.0-85084428195OAI: oai:DiVA.org:kth-284794DiVA, id: diva2:1489812
Note

QC 20220215

Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2023-02-17Bibliographically approved
In thesis
1. On fiber network fracture mechanics and kink band formation in biocomposites
Open this publication in new window or tab >>On fiber network fracture mechanics and kink band formation in biocomposites
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis summarizes seven appended papers dealing with: (1) The fracture of fibrous materials, e.g., paper and paperboard, toward understanding the upper limits of paper products and eventually optimizing packaging performance in its endeavor to replace plastics with recyclable packaging; (2) The compressive failure of flax fiber composites, a promising eco-friendly alternative to synthetic composite materials, toward understanding the low compressive-compared-to-tensile strength of biocomposites, a design-limiting feature, and ultimately engineer better performing natural fiber composites for sustainable structures. 

(1) In Paper I, we consider an elastoplastic Timoshenko beam finite element formulation with embedded strong discontinuities in the description of multi-fracturing fibers in fiber networks, a deficiency in previous studies. Seeing that the coupled (monolithic) problem is non-convex, materializing through poor robustness and undesirable material instabilities, we present an alternating minimization (staggered) algorithm for this class of problems and thus retain a positive definite stiffness matrix. In Paper II, we propose a hybrid of monolithic and staggered solution methods for robust and computationally efficient fracture simulations, with an up to 30-fold performance gain compared to the staggered approach in the benchmark exercises. The hybrid method represents a matrix regularization technique that retains a positive definite stiffness matrix while approaching the tangent stiffness matrix of the monolithic problem. In Paper III, we develop a geometrically nonlinear Simo-Reissner beam theory with embedded strong discontinuities based on the method of incompatible modes, capturing the activation of additional fibers during loading. We show that accounting for geometrical nonlinearity in the beam formulation is necessary for direct numerical simulations of fiber networks regardless of the density. 

(2) In Paper IV, we formulate a multi-scale homogenization framework for layered composite materials, where we model the instantaneous constitutive behavior of the matrix and the fiber separately utilizing a combined Voigt and Reuss approximation, followed by an upscaling to the composite. Advantages include the independence of fiber rotations because it is fully defined in the known initial configuration of the composite. In Paper V, we back-calculate the compressive stress-strain response of the flax fiber from the Impregnated Fiber Bundle Test (IFBT) in compression using the rule of mixtures, necessary input data in the micromechanical description of flax fiber composites. In Paper VI, we formulate hyperelastic models for deformation plasticity into the finite strain range. One application includes mimicking the stress-strain response of the fiber and the matrix in the homogenization of layered composite materials, which we numerically verify against a micromechanical model. In Paper VII, we extend the hyperelastic model to account for fiber damage. We show numerically and experimentally through X-ray Computed Tomography (XCT) and Scanning Electron Microscopy (SEM) that fiber damage plays the utmost role in the compressive failure of flax fiber composites – it is a major determinant of the material’s compressive stress-strain response. The micromechanisms include elementary fiber crushing and intra-technical fiber splitting.

Abstract [sv]

Avhandlingen sammanfattar sju bifogade artiklar om (1) fiberbrott i nätverksbaserade material som t.ex. papper och kartong, och (2) kompressionshållfastheten hos linfiberkompositer, vilket är ett lovande miljövänligt alternativ till syntetiska kompositmaterial.

(1) I Paper I betraktas en finit elementformulering av en elastiskt-plastisk Timoshenko balk med en inbäddad stark diskontinuitet för att beskriva multipla fiberbrott i fibernätverk. Detta har inte varit möjligt i tidigare studier. Eftersom det kopplade (monolitiska) problemet är icke-konvext, materialiserat genom dålig robusthet och oönskade materialinstabiliteter, presenteras en sekventiell minimeringsalgoritm för denna klass av problem som medför att styvhetsmatrisen förblir positivt definit. I Paper II föreslås en hybrid av monolitiska och sekventiella lösningsmetoder för robusta och beräkningseffektiva simuleringar av multipla fiberbrott i fibernätverk. Jämfört med det sekventiella tillvägagångssättet erhålles en upp till trettiofaldig prestandavinst för ett antal i testexempel. Hybridmetoden representerar en matrisregulariseringsteknik som bibehåller en positivt definit styvhetsmatris samtidigt som tangentstyvhetsmatrisen närmar sig det monolitiska problemet. I Paper III utvecklas en geometriskt olinjär Simo-Reissner balkteori med inbäddade starka diskontinuiteter baserad på metoden för icke kompatibla deformationsmoder, som fångar aktiveringen av ytterligare fibrer under belastningen. Dessutom visas att beaktande av geometriska olinjäriteter i formuleringen av balkteorin ger betydande bidrag till responsen vid direkta numeriska simuleringar av fibernätverk oavsett nätverkets densitet.

(2) I Paper IV formuleras ett flerskaligt ramverk för homogenisering av kompositlaminat. Det momentana konstitutiva beteendet hos matrisen och fibern modelleras separat med hjälp av en kombinerad Voigt och Reuss approximation. Kompositlaminatets egenskaper fås därefter genom en uppskalning. En fördel med detta tillvägagångssätt är att det är oberoende av fiberrotationer eftersom det är helt definierat i kompositens referenskonfiguration. Linfiberns spännings-töjningsrespons i kompression är nödvändig i den mikromekaniska beskrivningen av linfiberkompositer. I Paper V beräknas den med data från kompressionsprovning av impregnerade fiberbuntar, det s.k. Impregnated Fiber Bundle Test (IFBT), och blandningslagarna för kompositer. I Paper VI formuleras hyperelastiska modeller för deformationsplasticitet för stora töjningar. En applikation inkluderar att efterlikna fiberns och matrisens spännings-töjningsrespons vid homogenisering av skiktade kompositmaterial, vilket numeriskt verifieras med en mikromekanisk modell. I Paper VII utökas den hyperelastiska modellen för att ta hänsyn till fiberskador. Det visas både numeriskt och experimentellt, genom röntgendatortomografi (XCT) och svepelektronmikroskopi (SEM), att fiberskador har en avgörande betydelse för linfiberkompositers kompressionsstyrka. Typiska mikroskopiska fiberskador är krossning av elementärfibrer och splittring av tekniska fibrer.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:03
Keywords
Staggered, Monolithic, Fracture, Constitutive modeling, Strong discontinuity approach (SDA), Simo-Reissner beam theory, Geometrically exact beam theory, Minimeringsalgoritm, Simo-Reissner balkteori, Icke kompatibla deformationsmode, Konstitutiva model
National Category
Applied Mechanics Computer Sciences
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-323988 (URN)978-91-8040-481-5 (ISBN)
Public defence
2023-03-17, https://kth-se.zoom.us/j/68993674093, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, FibreNet
Note

QC 230220

Available from: 2023-02-20 Created: 2023-02-17 Last updated: 2023-03-01Bibliographically approved

Open Access in DiVA

fulltext(446 kB)283 downloads
File information
File name FULLTEXT01.pdfFile size 446 kBChecksum SHA-512
c580218dd971eee23bb9a1a2e325dbfd9717579acd0fa7f738fc9869eaea899715fb88b4cf6b14dc4d18df601a51a7243c87e86cd032f085e1c67c4c12e28b4f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Tojaga, VedadÖstlund, Sören

Search in DiVA

By author/editor
Tojaga, VedadÖstlund, Sören
By organisation
Solid Mechanics
In the same journal
Composites. Part A, Applied science and manufacturing
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 283 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 346 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf