kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compressive failure of fiber composites containing stress concentrations: Homogenization with fiber-matrix interfacial decohesion based on a total Lagrangian formulation
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0003-2151-8741
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0001-8699-7910
2019 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 182, article id 107758Article in journal, Editorial material (Refereed) Published
Abstract [en]

Compression failure by fiber kinking limits the structural applications of fiber composites. Fiber kinking is especially prevalent in laminates with holes and cutouts. The latter behavior is characterized by strain localization in the matrix material and fiber rotations. To study fiber kinking on the level of the individual constituents, a homogenization of fiber composites is presented. It is based on a total Lagrangian formulation, making it independent of fiber rotations. It accounts for the microstructure of the composite, including fiber-matrix interfacial decohesion, and enables all types of material behavior of the constituents. The response of each constituent of the composite is modeled separately and the global response is obtained by an assembly of all contributions. The model is implemented as a user-defined material model (UMAT) in ABAQUS and used for multiscale modeling of notched unidirectional plies subjected to compression. The model performs well in agreement with a finite element model of an explicit discretization of the microstructure and literature results. The simulations predict the formation of a kink band in near 0-degree plies and show that the open-hole compression strength is sensitive to fiber-matrix interfacial decohesion. The present work suggests a convenient and computationally efficient tool for simulating the elastic-plastic behavior of fiber composites on the fiber-matrix level and predicting the compressive strength of laminates.

Place, publisher, year, edition, pages
Elsevier BV , 2019. Vol. 182, article id 107758
Keywords [en]
Polymer-matrix composites (PMCs), Constitutive model, Homogenization, Non-linear behavior, Fiber-matrix interface, Fiber kinking, Notch
National Category
Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-284795DOI: 10.1016/j.compscitech.2019.107758ISI: 000487564800029Scopus ID: 2-s2.0-85070534424OAI: oai:DiVA.org:kth-284795DiVA, id: diva2:1489818
Note

QC 20210624

Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2023-02-17Bibliographically approved
In thesis
1. On fiber network fracture mechanics and kink band formation in biocomposites
Open this publication in new window or tab >>On fiber network fracture mechanics and kink band formation in biocomposites
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis summarizes seven appended papers dealing with: (1) The fracture of fibrous materials, e.g., paper and paperboard, toward understanding the upper limits of paper products and eventually optimizing packaging performance in its endeavor to replace plastics with recyclable packaging; (2) The compressive failure of flax fiber composites, a promising eco-friendly alternative to synthetic composite materials, toward understanding the low compressive-compared-to-tensile strength of biocomposites, a design-limiting feature, and ultimately engineer better performing natural fiber composites for sustainable structures. 

(1) In Paper I, we consider an elastoplastic Timoshenko beam finite element formulation with embedded strong discontinuities in the description of multi-fracturing fibers in fiber networks, a deficiency in previous studies. Seeing that the coupled (monolithic) problem is non-convex, materializing through poor robustness and undesirable material instabilities, we present an alternating minimization (staggered) algorithm for this class of problems and thus retain a positive definite stiffness matrix. In Paper II, we propose a hybrid of monolithic and staggered solution methods for robust and computationally efficient fracture simulations, with an up to 30-fold performance gain compared to the staggered approach in the benchmark exercises. The hybrid method represents a matrix regularization technique that retains a positive definite stiffness matrix while approaching the tangent stiffness matrix of the monolithic problem. In Paper III, we develop a geometrically nonlinear Simo-Reissner beam theory with embedded strong discontinuities based on the method of incompatible modes, capturing the activation of additional fibers during loading. We show that accounting for geometrical nonlinearity in the beam formulation is necessary for direct numerical simulations of fiber networks regardless of the density. 

(2) In Paper IV, we formulate a multi-scale homogenization framework for layered composite materials, where we model the instantaneous constitutive behavior of the matrix and the fiber separately utilizing a combined Voigt and Reuss approximation, followed by an upscaling to the composite. Advantages include the independence of fiber rotations because it is fully defined in the known initial configuration of the composite. In Paper V, we back-calculate the compressive stress-strain response of the flax fiber from the Impregnated Fiber Bundle Test (IFBT) in compression using the rule of mixtures, necessary input data in the micromechanical description of flax fiber composites. In Paper VI, we formulate hyperelastic models for deformation plasticity into the finite strain range. One application includes mimicking the stress-strain response of the fiber and the matrix in the homogenization of layered composite materials, which we numerically verify against a micromechanical model. In Paper VII, we extend the hyperelastic model to account for fiber damage. We show numerically and experimentally through X-ray Computed Tomography (XCT) and Scanning Electron Microscopy (SEM) that fiber damage plays the utmost role in the compressive failure of flax fiber composites – it is a major determinant of the material’s compressive stress-strain response. The micromechanisms include elementary fiber crushing and intra-technical fiber splitting.

Abstract [sv]

Avhandlingen sammanfattar sju bifogade artiklar om (1) fiberbrott i nätverksbaserade material som t.ex. papper och kartong, och (2) kompressionshållfastheten hos linfiberkompositer, vilket är ett lovande miljövänligt alternativ till syntetiska kompositmaterial.

(1) I Paper I betraktas en finit elementformulering av en elastiskt-plastisk Timoshenko balk med en inbäddad stark diskontinuitet för att beskriva multipla fiberbrott i fibernätverk. Detta har inte varit möjligt i tidigare studier. Eftersom det kopplade (monolitiska) problemet är icke-konvext, materialiserat genom dålig robusthet och oönskade materialinstabiliteter, presenteras en sekventiell minimeringsalgoritm för denna klass av problem som medför att styvhetsmatrisen förblir positivt definit. I Paper II föreslås en hybrid av monolitiska och sekventiella lösningsmetoder för robusta och beräkningseffektiva simuleringar av multipla fiberbrott i fibernätverk. Jämfört med det sekventiella tillvägagångssättet erhålles en upp till trettiofaldig prestandavinst för ett antal i testexempel. Hybridmetoden representerar en matrisregulariseringsteknik som bibehåller en positivt definit styvhetsmatris samtidigt som tangentstyvhetsmatrisen närmar sig det monolitiska problemet. I Paper III utvecklas en geometriskt olinjär Simo-Reissner balkteori med inbäddade starka diskontinuiteter baserad på metoden för icke kompatibla deformationsmoder, som fångar aktiveringen av ytterligare fibrer under belastningen. Dessutom visas att beaktande av geometriska olinjäriteter i formuleringen av balkteorin ger betydande bidrag till responsen vid direkta numeriska simuleringar av fibernätverk oavsett nätverkets densitet.

(2) I Paper IV formuleras ett flerskaligt ramverk för homogenisering av kompositlaminat. Det momentana konstitutiva beteendet hos matrisen och fibern modelleras separat med hjälp av en kombinerad Voigt och Reuss approximation. Kompositlaminatets egenskaper fås därefter genom en uppskalning. En fördel med detta tillvägagångssätt är att det är oberoende av fiberrotationer eftersom det är helt definierat i kompositens referenskonfiguration. Linfiberns spännings-töjningsrespons i kompression är nödvändig i den mikromekaniska beskrivningen av linfiberkompositer. I Paper V beräknas den med data från kompressionsprovning av impregnerade fiberbuntar, det s.k. Impregnated Fiber Bundle Test (IFBT), och blandningslagarna för kompositer. I Paper VI formuleras hyperelastiska modeller för deformationsplasticitet för stora töjningar. En applikation inkluderar att efterlikna fiberns och matrisens spännings-töjningsrespons vid homogenisering av skiktade kompositmaterial, vilket numeriskt verifieras med en mikromekanisk modell. I Paper VII utökas den hyperelastiska modellen för att ta hänsyn till fiberskador. Det visas både numeriskt och experimentellt, genom röntgendatortomografi (XCT) och svepelektronmikroskopi (SEM), att fiberskador har en avgörande betydelse för linfiberkompositers kompressionsstyrka. Typiska mikroskopiska fiberskador är krossning av elementärfibrer och splittring av tekniska fibrer.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:03
Keywords
Staggered, Monolithic, Fracture, Constitutive modeling, Strong discontinuity approach (SDA), Simo-Reissner beam theory, Geometrically exact beam theory, Minimeringsalgoritm, Simo-Reissner balkteori, Icke kompatibla deformationsmode, Konstitutiva model
National Category
Applied Mechanics Computer Sciences
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-323988 (URN)978-91-8040-481-5 (ISBN)
Public defence
2023-03-17, https://kth-se.zoom.us/j/68993674093, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, FibreNet
Note

QC 230220

Available from: 2023-02-20 Created: 2023-02-17 Last updated: 2023-03-01Bibliographically approved

Open Access in DiVA

fulltext(3053 kB)419 downloads
File information
File name FULLTEXT01.pdfFile size 3053 kBChecksum SHA-512
f293072902a7d7c1aeaa19b35f00e3ea44b24f52daf48fbb3c7a060fd51e922077c61f20ee052b01c2fb3e395f96b05b13d0b8847195746d60bf623852084d60
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Tojaga, VedadHazar, SelcukÖstlund, Sören

Search in DiVA

By author/editor
Tojaga, VedadHazar, SelcukÖstlund, Sören
By organisation
Solid Mechanics
In the same journal
Composites Science And Technology
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 419 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 325 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf