kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Humidity-induced Nanoscale Restructuring in PEDOT:PSS and Cellulose reinforced Bio-based Organic Electronics
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-5789-6299
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0001-8879-7875
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0003-4441-8882
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Keywords [en]
Humidity-effect, GISANS, cellulose, PEDOT:PSS, Soft-matter, Organic-electronics, Neutron reflectivity, Conductivity
National Category
Other Physics Topics Physical Chemistry Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-285984OAI: oai:DiVA.org:kth-285984DiVA, id: diva2:1501365
Note

QC 20201201

Available from: 2020-11-16 Created: 2020-11-16 Last updated: 2023-12-07Bibliographically approved
In thesis
1. Neutron and X-ray Surface Scattering Reveals the Morphology of Soft Matter Thin Films
Open this publication in new window or tab >>Neutron and X-ray Surface Scattering Reveals the Morphology of Soft Matter Thin Films
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The last decades have been overshadowed by reports about the seemingly endless increase use of fossil-based resources. With the development of new products, our mindset is changing so that we more and more need to consider sustainability in our daily lives. Furthermore, smarter devices are indispensable in our world and daily life, and these are expected to be smaller and smaller in size.

To support the transition from fossil-based to sustainable materials, we need to develop knowledge of new materials. Within this thesis project, the aim has been to understand the thin-film properties of sustainable materials and to develop methodologies to measure these. As sustainable template material wood-based nanocellulose was chosen as a bio-degradable representative with favourable favourable physical properties, such as lightweight, transparency, and flexibility. These properties make nanocellulose a perfect candidate for future advanced applications in thin-film organic solar cells, supercapacitors, or sensors. Nanocellulose comprises only a part of such a device, and hence the relevant functional materials and their combinations have to be studied to reveal the interaction between multiple material components on the final device performance. As the nanoscale, or even Ångstrom scale, governs the macroscopic physical properties, it is crucial to understand the materials in detail. Ergo, neutron and X-ray surface-sensitive scattering methods were applied to study nanoparticle deposition layering kinetics and the effects of environmental changes, which revealed the morphology of the resulting nanoporous nanocellulose thin films. The knowledge was used to infiltrate water-soluble intrinsic conductive polymers into these nanopores, which serves as a model for transparent but conductive templates for organic electronics. By changing the environment of the films through humidity cycling, the impact of the environment during a real-life application could be illustrated. Neutron scattering experiments also showed that the cellulose-conductive polymer composite (or hybridmaterial) changes irreversibly during humidity cycling while the pure nanocellulose films show fully reversible properties.

Furthermore, the thermal decomposition of silver nitrate deposited on nanocellulose was studied to understand the nanofibrils' impact on the synthesis of nanoparticles. The transparency allowed in situ studies of the synthesis process, the spectroscopic properties as well as the plasmonic effect, which demonstrated routes for minimal material usage concepts for surface synthesis processes. It was also discovered that the process allows for band-gap tuning, which can be directly be applied in organic solar cells to tailor the band-gap to be adapted and hence increasing the efficiency.The morphological properties, as studied using X-rays and neutrons, were correlated to macroscopic properties by measuring wettability, surface topography, spectroscopy, or conductivity to examine the full materials application possibilities. Neutron and X-ray scattering methods are complementary and wisely combined, thus allowed pioneering studies of bio-based sustainable nanocomposites leading to advanced functional material concepts that support the development of devices using less fossil-based materials.

Abstract [sv]

Den ökande användningen av fossilbaserade resurser representerar en global samhällsutmaning som kan mötas genom utveckling av nya materialkoncept. Vårt samhälle fylls även av smarta produkter, vilka både förväntas bidra till ökad hållbarhet och att kontinuerligt bli mindre i storlek. För att möjliggöra denna utveckling och samtidigt minska användningen av fossilbaserade material behöver vi öka vår kunskap om nya biobaserade material och deras användning. Målet med denna avhandling är en ökad insikt i egenskaperna hos tunna biobaserade filmer, och att utveckla metoder för att karakterisera dessa egenskaper. Utgångspunkten har varit att använda vedbaserad nanocellulosa, en biobaserad och förnyelsebar råvara som är biologiskt nedbrytbar, har mycket goda mekaniska egenskaper, och kan användas för framställningen av materialkoncept med låg densitet, transparens och flexibilitet. Detta gör nanocellulosa till en perfekt grundkomponent i framtida avancerade biobaserade tunnfilmsapplikationer såsom organiska solceller, superkondensatorer eller sensorer, vilket möjliggörs genom inblandning av komponenter som ger önskad funktion. Olika materialkoncept har därför studerats med syftet att öka förståelsen för interaktionerna mellan olika komponenter och hur dessa påverkar prestanda och funktion. De makroskopiska egenskaperna av ett material ges av dess hierarkiska struktur, från ångströms- och nanometerskalan och upp till variationer på mikrometer och millimeterskalan. Ergo har fokus varit på att studera kinetik relaterat till framställning av filmer uppbyggda genom ytdeponering av nanopartiklar, inkluderande studier av effekter av omgivande atmosfär. Dessa studier har genomförts med hjälp av ytselektiva neutron- och röntgenspridningsmetoder och har resulterat i goda insikter i morfologin hos tunna nanoporösa nanocellulosafilmer. Vidare har även effekter av att fylla dessa nanoporer med vattenlösliga ledande polymerer studerats, då detta är en intressant funktionaliseringsväg som möjliggör tillverkning av transparenta och ledande templat för organisk elektronik. I detta sammanhang studerades även effekter av fuktvariationer i omgivningen, vilket är en viktig frågeställning för många biobaserade material och cellulosabaserade material i synnerhet. Med hjälp av neutronspridningsexperiment kunde skillnader mellan rena nanocellulosafilmer och filmer fyllda med ledande polymerer studeras, där strukturen hos de rena filmerna förändras reversibelt under fuktcykling, till skillnad från filmerna med ledande polymerer, vars struktur förändrades irreversibelt. Slutligen studerades även temperaturens inverkan på syntesen av nanopartiklar som initieras genom deponering av silvernitrat på nanocellulosafilmer, där materialens transparens tillät in-situ studier av processen, spektroskopiska egenskaper samt plasmoniska effekter. Detta visade att nanocellulosafilmer är ett lovande templat för ytsyntesprocesser, där det särskilt observerades att de olika processparametrarna direkt kan kopplas till det observerade bandgapet, kunskaper som kan användas för att skräddarsy organiska solceller så att dessa blir effektivare.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 116
Series
TRITA-SCI-FOU ; 2020:40
National Category
Polymer Chemistry Physical Chemistry Paper, Pulp and Fiber Technology Materials Chemistry
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-285986 (URN)978-91-7873-717-8 (ISBN)
Public defence
2020-12-11, Live-streaming via Zoom: https://kth-se.zoom.us/j/66585510106, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 201117

Available from: 2020-11-17 Created: 2020-11-16 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Brett, CalvinForslund, Ola KenjiNocerino, ElisabettaMatsubara, NamiMånsson, MartinSöderberg, DanielRoth, Stephan V.

Search in DiVA

By author/editor
Brett, CalvinForslund, Ola KenjiNocerino, ElisabettaMatsubara, NamiMånsson, MartinSöderberg, DanielRoth, Stephan V.
By organisation
Engineering MechanicsWallenberg Wood Science CenterMaterials and NanophysicsFiberprocesserBiocomposites
Other Physics TopicsPhysical ChemistryPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf