kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Resolvent modelling of near-wall coherent structures in turbulent channel flow
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-9627-5903
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-6570-5499
Show others and affiliations
2020 (English)In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 85, article id 108662Article in journal (Refereed) Published
Abstract [en]

Turbulent channel flow was analysed using direct numerical simulations at friction Reynolds numbers Re-tau = 180 and 550. The databases were studied using spectral proper orthogonal decomposition (SPOD) to identify dominant near-wall coherent structures, most of which turn out to be streaks and streamwise vortices. Resolvent analysis was used as a theoretical approach to model such structures, as it allows the identification of the optimal forcing and most amplified flow response; the latter may be related to the observed relevant structures obtained by SPOD, especially if the gain between forcing and response is much larger than what is found for suboptimal forcings or if the non-linear forcing is white noise. Results from SPOD and resolvent analysis were compared for several combinations of frequencies and wavenumbers. For both Reynolds numbers, the best agreement between SPOD and resolvent modes was observed for the cases where the lift-up mechanism from resolvent analysis is present, which are also the cases where the optimal resolvent gain is dominant. These results confirm the outcomes in our previous studies (Abreu et al., 2019; Abreu et al., 2020), where we used a DNS database of a pipe flow for the same Reynolds numbers.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE INC , 2020. Vol. 85, article id 108662
Keywords [en]
SPOD, Resolvent analysis, Wall-bounded turbulence, Coherent structures
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-283900DOI: 10.1016/j.ijheatfluidflow.2020.108662ISI: 000571585200005Scopus ID: 2-s2.0-85089533954OAI: oai:DiVA.org:kth-283900DiVA, id: diva2:1505610
Note

QC 20201201

Available from: 2020-12-01 Created: 2020-12-01 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Schlatter, PhilippVinuesa, RicardoHenningson, Dan S.

Search in DiVA

By author/editor
Schlatter, PhilippVinuesa, RicardoHenningson, Dan S.
By organisation
Linné Flow Center, FLOWFluid Mechanics and Engineering Acoustics
In the same journal
International Journal of Heat and Fluid Flow
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 206 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf