kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling and Shaping of the DC-Side Admittance of a Modular Multilevel Converter under Closed-Loop Voltage Control
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-1136-581X
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0001-5919-2308
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0001-8891-5659
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-8565-4753
Show others and affiliations
2021 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 36, no 6, p. 7294-7306Article in journal (Refereed) Published
Abstract [en]

The dc-side admittance of a modular multilevel converter can be used in assessing the stability of the dc system by means of impedance-based stability criteria. An accurate mathematical representation of the small-signal admittance can be given using harmonic linearization. To this end, the effect of the internal dynamics of the converter, e.g., the circulating current, the converter control scheme, and the controller parameters on the admittance of the converter should be analyzed. In this paper, a linear analytical model for the dc-side admittance of the converter is derived based on a combination of harmonic linearization and frequency-domain representation which incorporates different control schemes. Moreover, an admittance model is given for the closed-loop voltage control mode of the converter, where the ideal insertion indices are applied. To this end, the impact of an arm-balancing controller and its parameters on the dc-side admittance of the converter is investigated. Finally, experiments are carried out on a down-scaled prototype to validate the accuracy of the analytical model.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021. Vol. 36, no 6, p. 7294-7306
Keywords [en]
Admittance, Voltage control, Harmonic analysis, Stability criteria, Mathematical model, Analytical models, Impedance
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-286824DOI: 10.1109/TPEL.2020.3041387ISI: 000655512500101Scopus ID: 2-s2.0-85097437352OAI: oai:DiVA.org:kth-286824DiVA, id: diva2:1505778
Funder
EU, Horizon 2020, 691714
Note

QC 20250304

Available from: 2020-12-01 Created: 2020-12-01 Last updated: 2025-03-04Bibliographically approved
In thesis
1. Impedance Analysis and Stability Assessment of Modular Multilevel Converters
Open this publication in new window or tab >>Impedance Analysis and Stability Assessment of Modular Multilevel Converters
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Owing to their scalability, modular design, and high efficiency, modular multilevel converters (MMCs) are considered the state-of-the-art topology in high voltage dc (HVDC) and flexible ac transmission (FACT) systems. Ensuring converter- and system-level stability is crucial to facilitate the large-scale integration of these converters into future power grids. 

Similar to other power electronics systems, the stability of MMC interfaced dc and ac systems can be assessed via the impedance-based stability criterion, which requires detailed representation or measurement of the MMC terminal impedances. The main objective of this thesis is thus, to model the dc- and ac-side impedances of the MMCs taking into account various control system implementations. To this end, the impact of different control schemes and parameters on the converter impedances are thoroughly investigated, resulting in models that serve as tools for analyzing potential undesirable interactions between converter control dynamics and the system to which the converter is connected.

The thesis also focuses on developing impedance models in situations where parts of the control system are concealed for intellectual property protection. By combining frequency-domain system identification and harmonic linearization, these black-boxed control system components are integrated into the impedance model. This approach enables the analysis of the impact of outer-loop control settings on converter stability.

Finally, the thesis assesses the stability of several case studies in which MMCs are interfaced to dc or ac systems. Consequently, active damping solutions are proposed to mitigate harmonic resonances arising from the interaction of the converter and the dc or ac systems. Theoretical analyses are substantiated through time-domain simulations and laboratory experiments.

Key contributions include the development of impedance models under various control schemes and a method for estimating dc-side impedance in MMC systems with black-boxed control. The findings provide insights into impedance shaping, stability challenges, and effective damping strategies in MMC-based systems.

Abstract [sv]

Tack vare av sin skalbarhet, modulära design och höga verkningsgrad anses modulära multinivå-omvandlare (MMC) vara den främsta topologin för högspänd likströmsöverföring (HVDC) och flexibel växelströmstransmission (FACT). Att säkerställa stabilitet på omvandlar- och systemnivå är avgörande för att möjliggöra storskalig integration av dessa omvandlare i framtida elnät.

I likhet med andra kraftelektroniksystem kan stabiliteten hos MMC-anslutna likströms- och växelströmssystem bedömas genom det impedansbaserade stabilitetskriteriet, vilket kräver detaljerad modellering eller mätning av omvandlarnas-terminalimpedanserna. Huvudsyftet med denna avhandling är således att modellera likströms- och växelströmsimpedansen för MMC:erna vid olika implementeringar av styrsystemen. Därför undersöks inverkan av olika styrprinciper och parametrar på omvandlarens impedans, vilket resulterar i modeller som fungerar som verktyg för att analysera potentiella oönskade interaktioner mellan omvandlarens styrdynamik och det system som omvandlaren är ansluten till.

Avhandlingen fokuserar också på att utveckla impedansmodeller för situationer där delar av styrsystemet är dolda, för att skydda immateriella rättigheter. Genom att kombinera systemidentifiering i frekvensplanet och harmonisk linjärisering, integreras dessa dolda styrsystemkomponenter i impedansmodellen. Detta tillvägagångssätt gör det möjligt att analysera effekten av parameterval för yttre, ej dolda, reglerslingor på omvandlarens stabilitet.

Slutligen bedömer avhandlingen stabiliteten i flera fall där MMC:er ansluts till likströms- eller växelströmssystem. Följaktligen föreslås aktiva dämpningslösningar för att mildra övertonsresonanser som uppstår genom växelverkan mellan omvandlaren och likströms- eller växelströmssystemen. Teoretiska analyser underbyggs genom simuleringar i tidplanet och laboratorieexperiment.

Viktiga bidrag utgörs av utvecklingen av impedansmodeller under olika styrprinciper och en metod för att uppskatta likströmssidans impedans i MMC-system med black-box-styrning. Resultaten ger insikter i impedansstyrning, stabilitetsfrågor och effektiva dämpningsstrategier i MMC-baserade system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. ix, 65
Series
TRITA-EECS-AVL ; 2024:88
Keywords
Converter control, converter-driven stability, frequency-domain analysis, harmonic linearization, impedance/admittance modeling, modular multilevel converter (MMC), partially black-boxed control, Omvandlarstyrning, omvandlardriven stabilitet, frekvensdomänanalys, harmonisk linjärisering, impedans/admittansmodellering, modulär flernivåomvandlare (MMC), styrning med delvis svart låda.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-356602 (URN)978-91-8106-112-3 (ISBN)
Public defence
2024-12-16, Sal H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241120

Available from: 2024-11-20 Created: 2024-11-19 Last updated: 2024-12-03Bibliographically approved

Open Access in DiVA

fulltext(7144 kB)656 downloads
File information
File name FULLTEXT01.pdfFile size 7144 kBChecksum SHA-512
88e6e36b119ceb5b2ae70baeaf4292bdb69586e44178b9c27c5f4f3d7a06f6c2593ff76064762ff68206e838c006003c54deb064bbde53cf2c53dc5b431019a2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Nahalparvari, MehrdadAsoodar, MohsenBessegato, LucaNorrga, StaffanNee, Hans-Peter

Search in DiVA

By author/editor
Nahalparvari, MehrdadAsoodar, MohsenBessegato, LucaNorrga, StaffanNee, Hans-Peter
By organisation
Electric Power and Energy Systems
In the same journal
IEEE transactions on power electronics
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 656 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 476 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf