Performance Guarantees for Physical Layer Authentication in Mission-Critical Communications
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
As the application areas for wireless communications are expanding, we also see new security vulnerabilities arise due to the open nature of the wire- less medium. One particularly challenging problem is how to guarantee the security of emerging mission-critical communications, e.g., realized by fifth generation (5G) mobile networks, that will enable use-cases like industrial automation, vehicular communications, and smart grids. As the room for security overhead is limited in mission-critical communications, mainly due to the associated strict requirements on latency and reliability, new lightweight security techniques are researched within the area of physical layer security. In particular, feature-based physical layer authentication (PLA), exploiting transmitter-specific features extracted from received signals for device au- thentication, is considered a promising solution for lightweight authentication and intrusion detection in mission-critical communications. In this thesis, we provide mathematical tools for analyzing channel-based PLA schemes, and in particular, for deriving worst-case performance guarantees appropriate for mission-critical contexts. We consider worst-case performance guarantees for feature-based PLA from two perspectives:
Firstly, we provide mathematical bounds on the delay-performance im- pacts that arise due to the unlikely but inevitable erroneous authentication decisions (i.e., false alarms and missed detections). We model the PLA scheme using queueing analysis, develop models for active impersonation attacks, and derive bounds on the queueing delay violation probability using tools from stochastic network calculus. We consider the performance for both single- and multiple-antenna receiver architectures, and furthermore, a distributed multiple-antenna system in which we analyze varying degrees of distributed processing. These results establish under which practical deployments and channel conditions feature-based PLA would constitute a viable option for mission-critical applications. For instance, we find that for low-mobility scenarios with line-of-sight conditions, as exemplified by an industrial automation scenario with fixed sensor deployment, PLA can be used for strongly enhanced security while simultaneously maintaining mission-critical latency deadlines with high reliability. Moreover, we discuss extensions that would allow analysis of scenarios without line-of-sight and with higher mobility.
From the second perspective, we provide tools for deriving the worst-case detection performance under optimal attackers that are aware of the PLA scheme. First, we consider a distributed PLA setting where authentication is based on the channel-states observed at multiple distributed radio-heads. We derive the optimal single-antenna attack strategy and corresponding missed detection probability, and provide a heuristic method for finding the optimal spatial attack position with respect to a given deployment. We then extend the results by considering a multiple-antenna attacker, the correspond- ing optimal pre-coding strategies, and the detection performance under the worst-case attacker. Furthermore, we analyze the impacts of limited channel state information (CSI) and power budgets at the attacker and provide a counter-strategy that can be used by the PLA receiver. With the single- antenna attacker, our results show significant detection performance benefits from a distributed antenna setting, which argues for practical relevance of PLA within modern 5G technologies like coordinated multi-point (CoMP) and distributed multiple-input multiple-output (MIMO) systems. For the multiple-antenna attacker, we observe significant impacts given perfect CSI knowledge and favorable channel conditions at the attacker. However, under realistic assumptions on power budget, CSI imperfections, and through the proposed counter-strategy, we find that strict detection performance guarantees can be maintained.
Abstract [sv]
Tillämpningsområdena för trådlös kommunikation expanderar konstant och möjliggör nya applikationer av informationsteknik. Denna utveckling skapar dock samtidigt nya säkerhetsbrister eftersom det trådlösa mediet är öppet för både avlyssning och extern manipulation. Ett viktigt och utmanande problem är hur man kan leverera säkerhetsgarantier för kritisk trådlös kommunikation, som till exempel kan användas för industriell automation, fordonskommunikation, smarta elnät, samt andra applikationer inom femte generationens (5G) mobilnät. Eftersom kritisk trådlös kommunikation karakteriseras av extremt höga krav på latens och pålitlighet har dessa system mycket begränsade resurser för tidskrävande kommunikation och beräkningar. Den senaste forskningen riktar därför bland annat in sig på säkerhetsmetoder i det fysiska kommunikationslagret (PHY-Layer) för att uppnå säker kommunikation utan att överskrida nämnda begränsningar. Autentisering i det fysiska kommunikationslagret är en sådan metod, vilken utnyttjar sändar-specifika egenskaper som kan avläsas från mottagna trådlösa signaler för att verifiera sändarens identitet och detektera potentiella intrång. Denna avhandling utvecklar matematiska verktyg för att analysera kanalbaserad autentisering i det fysiska lagret, med fokus på att härleda prestandagarantier som är lämpliga för kritisk kommunikation. Vi utvecklar sådana garantier utifrån två perspektiv:
För det första tillhandahåller vi matematiskt härleda begränsningar av de fördröjningar som uppstår på grund av de sällsynta men oundvikliga felbeslut som dessa autentiseringsprotokoll resulterar i. Vi modellerar autentiseringsprotokollen med hjälp av köanalys, utvecklar modeller för aktiva impersonationsbaserade attacker samt härleder övre begränsningar för sannolikheten att systemets krävda latens överskrids. Dessa resultat härleds med hjälp av ramverket stochastic network calculus. Analysen utökas från en-antenns mottagare till fler-antennsystem samt ett distribuerat fler-antennsystem med olika grader av distribuerad beslutsfattning. Våra resultat etablerar de praktiska förutsättningar som krävs för att ett kanalbaserat autentiseringprotokoll ska uppfylla de krav som ställs inom kritisk trådlös kommunikation. Resultaten visar att kanalbaserad autentisering, givet ett scenario med låg mobilitet samt direkt siktlinje mellan sändare och mottagare, kan kan användas för förbättrad säkerhet samtidigt som strikta begränsningar på latens upprätthålls. Vidare diskuterar vi möjliga fall under vilka resultaten kan utökas till scenarier med hög mobilitet samt utan direkt siktlinje.
Den andra typen av garantier handlar om att härleda övre begränsningar för detektionsprestandan, i termer av sannolikheten för ett intrång, under optimalt designade attacker. Först studerar vi ett distribuerat autentiseringsprotokoll baserat på kanalobservationer vid flera distribuerade fler-antennsmottagare. Vi härleder den optimala transmissionsstrategin för en angripare med en antenn samt motsvarande sannolikhet för lyckat intrång. För detta fall tillhandahåller vi även en heuristisk metod för att hitta den optimala attackpositionen. Vidare utvecklar vi resultaten till en angripare utrustad med flera antenner, härleder motsvarande optimala strategier samt detektionsprestandan givet en kompetent angripare med perfekt kanalinformation. Vi analyserar även påverkan av begränsad kanalinformation och effektbegränsningar hos angriparen samt visar en effektiv motstrategi som kan användas av den autentiserande mottagaren. Resultaten visar att en angripare med flera antenner och perfekt kanalinformation kan ha en signifikant påverkan på autentiseringsprestandan. Givet realistiska antaganden om angriparens kanalinformation och effektbudget visar vi dock att säker detektionsprestanda kan garanteras. Resultaten visar även att stora förbättringar erhålls med den distribuerade autentiseringsmetoden, vilket visar praktisk relevans för autentisering i det fysiska lagret inom moderna 5G teknologier så som coordinated multi-point (CoMP) och distribuerade fler-antennsystem.
Place, publisher, year, edition, pages
Stockholm, Sweden: - , 2021. , p. 214
Series
TRITA-EECS-AVL ; 2021:1
Keywords [en]
Physical layer authentication, mission-critical communica- tions, worst-case performance, queueing delay performance, stochastic net- work calculus, optimal attack strategies.
National Category
Communication Systems Telecommunications
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-287203ISBN: 978-91-7873-727-7 (print)OAI: oai:DiVA.org:kth-287203DiVA, id: diva2:1506919
Public defence
2021-01-22, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Projects
CERCES
Note
QC 20201208
2020-12-082020-12-042022-06-25Bibliographically approved
List of papers