kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coatings utilization to modify the effective properties of high temperature packed bed thermal energy storage
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4932-7103
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4134-3520
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-7193-5303
2021 (English)In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 185, article id 116414Article in journal (Refereed) Published
Abstract [en]

High-temperature thermal energy storage is becoming more and more important as a key component in concentrating solar power systems and as an economically viable large-scale energy storage solution. Ceramics and natural rocks based packed beds are one of the attracting solutions. For application temperatures above 600 ◦C, radiation heat transfer becomes the dominant heat transfer phenomenon and it greatly influences the performance of thermal storage systems. Coatings with different thermal properties (mainly thermal emissivity and thermal conductivity) could be exploited to modify the effective thermal properties of packed beds. In this work, we present a methodology to account for the thermal effect of a coating layer applied over the pebbles of a packed bed. The influences on the packed bed effective thermal conductivity of several characteristics of the coating material, packed bed arrangement, and filler material are investigated. The results show that low emissivity coatings could reduce the effective thermal conductivity of a rock based packed bed of about 58%, with respect to a similar uncoated solution, already at 800 ◦C. A low emissivity coating could also limit the increase in the thermal effective conductivity from the cold to the hot zone of the storage. Coatings would have a higher influence when applied in packed beds with large size particles, relatively high thermal conductivity of the substrate and void fraction. The application of different coatings, with various thermo-physical properties, in different parts of the storage could modify the effective thermal conductivity distribution and enable a partial control of the thermocline degradation, increasing the storage thermal efficiency.

Place, publisher, year, edition, pages
Elsevier, 2021. Vol. 185, article id 116414
Keywords [en]
Coatings, Thermal emissivity, Radiation heat transfer, Packed bed thermal energy storage, Effective thermal conductivity
National Category
Energy Engineering Other Materials Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-287456DOI: 10.1016/j.applthermaleng.2020.116414ISI: 000607843900065Scopus ID: 2-s2.0-85097636646OAI: oai:DiVA.org:kth-287456DiVA, id: diva2:1508842
Funder
Swedish Energy Agency, P43284-1
Note

QC 20210211

Available from: 2020-12-10 Created: 2020-12-10 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
Open this publication in new window or tab >>Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-temperature thermal energy storage could enable widespread exploitation of renewable energy sources, providing the required energy flexibility. Technology and component development is needed to enhance the storage thermo-dynamic performance, and identify key design features. Similarly, system-level integration studies are required to fully understand the techno-economic potential of high-temperature thermal energy storage as integrated into different energy systems. This research work focuses on the development of an innovative packed bed high-temperature thermal energy storage and a multi-level investigation of the potential of this technology. The integration and techno-economic performance of a packed bed thermal energy storage have been studied focusing primarily on its application within concentrating solar power plants. Numerical studies and experimental tests have been conducted assessing the suitability of various coatings to optimize the heat transfer in high-temperature packed beds. A comprehensive design of an innovative packed bed thermal energy storage prototype and its experimental evaluation have been presented. Adapted numerical models have also been validated based on the experimental results, providing the ground for further technology development.The outcomes of this research work show that packed bed thermal energy storage could be a key component in air-driven concentrating solar powerplants, granting high capacity factor while limiting the capital costs. The designed radial flow packed bed storage showed thermal efficiency of about72 % and extremely low-pressure drops. Thermocline degradation control strategies and proper packing have been highlighted as key aspects to target for further development. This research also highlights that accurate boundary conditions should be accounted for when designing packed bed thermal energy storage. Innovative figures of merit, such as the Levelized Cost ofStorage, should be included in the design process. The outcomes of this work show also that coatings could be exploited to modify the particle surface properties while optimizing the heat transfer within packed bed units. In particular, high emissivity coatings could enhance the effective thermal conductivity, while coatings with low thermal emissivity could be exploited as a form of passive thermocline control. Finally, this work testifies that high temperature packed bed could represent a techno-economically valuable energy storage solution. Optimized packed bed designs and their system integration could enable higher renewable penetration, as well as the recovery of a large amount of waste heat from the hard-to-abate and energy-intensive industrial sector.

Abstract [sv]

Lagring av termisk energi vid hög temperatur kan möjliggöra en omfattande exploatering av förnybara energikällor, vilket ger den erforderliga energiflexibiliteten för ett klimatneutralt samhälle. Teknik och komponentutveckling behövs för att maximera den termodynamiska prestandan för lagring och för att identifiera viktiga designparametrar. På samma sätt krävs integrationsstudier på systemnivå för att fullt ut förstå den tekno-ekonomiska potentialen vid lagring av termisk energi vid hög temperatur.

Detta forskningsarbete fokuserar på utveckling och provning av en innovativ lagringsteknologi av värmeenergi i packade bäddar och en undersökning av potentialen för denna teknologi. Integrationen och den teknikekonomiska prestandan för en högtempererad termisk bädd har studerats i samband med anläggningar för koncentrerad solkraft. Numeriska studier och experimentella tester har genomförts för att bedöma prestandan av olika partikelytskikt i bäddmaterialet och för att optimera värmeöverföringen i termiska bäddar med hög temperatur. Den omfattande designen av en innovativ prototyp för lagring av högtemperatur-värme med packade bäddar och dess experimentella utvärdering presenteras. Anpassade numeriska modeller har också validerats baserat på experimentella resultat, vilket ger grunden för ytterligare teknikutveckling.

Resultaten av detta forskningsarbete visar att lagring av termisk energi för packade bäddar kan vara en nyckelteknologi i luftdrivna koncentrerade solkraftverk, då dessa levererar en hög kapacitetsfaktor samtidigt som kapitalkostnaderna begränsas. Den i detta arbete utvecklade innovativa radialflödesbädden visade en effektivitet på cirka 72 % vid extremt låga tryckfall. Termokline-kontroll och en noggrann och välfördelad packning har lyfts fram som viktiga aspekter att rikta in vidare utveckling på. Exakta flödesgränsskiktsförhållanden bör också beaktas vid konstruktion av termisk energilagring i packade bäddar. Nya nyckeltal som föreslås i detta arbete, till exempel den nivellerade lagringskostnaden, bör ingå i designprocessen eftersom de visas vara mindre beroende av specifika driftförhållanden. Partikelytskikt med hög emissivitet kan utnyttjas för att förbättra den effektiva värmeledningsförmågan. Medan ytskikt med minskande värmeemissivitet kan utnyttjas som en form av passiv termokline-kontroll.

Slutsatsen av detta arbete är att högtempererade packade bäddar skulle kunna representera en tekniskt och ekonomiskt värdefull energilagringslösning. Optimerade packade bädd-designer och deras systemintegration skulle kunna möjliggöra högre penetration av förnybar energi, såväl som återvinning av en stor mängd spillvärme från den energiintensiva industrisektorn.

 

Nyckelord

Värmeenergilagring, packad bädd, teknikekonomisk analys, komponentdesign, experimentell utvärdering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 295
Series
TRITA-ITM-AVL ; 2022:4
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-309660 (URN)978-91-8040-169-2 (ISBN)
Public defence
2022-04-01, M3 / https://kth-se.zoom.us/j/68531114425, Brinellvägen 64, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, P43284-1
Available from: 2022-03-17 Created: 2022-03-08 Last updated: 2022-09-13Bibliographically approved

Open Access in DiVA

fulltext(3200 kB)504 downloads
File information
File name FULLTEXT01.pdfFile size 3200 kBChecksum SHA-512
57c392f7ef01d967743912519345801d49e0759b625063cc46acbf28da920ae01b48ba39d18ee133e86e215a8c5b7141ede1ec8fd8440aa2626e230f53a990d1
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Trevisan, SilviaWang, WujunLaumert, Björn

Search in DiVA

By author/editor
Trevisan, SilviaWang, WujunLaumert, Björn
By organisation
Heat and Power Technology
In the same journal
Applied Thermal Engineering
Energy EngineeringOther Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 506 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 863 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf