kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Packed bed thermal energy storage: A novel design methodology including quasi-dynamic boundary conditions and techno-economic optimization
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4932-7103
Department of R&D and Industrial Integration, Moroccan Agency for Sustainable Energy (MASEN), Complexe Zénith Rabat N°50, Rocade Sud Rabat-Casablanca Immeubles A-B-C-D, Souissi, Rabat, Morocco.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.ORCID iD: 0000-0002-7804-667X
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-7193-5303
2021 (English)In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 36, article id 102441Article in journal (Refereed) Published
Abstract [en]

High temperature thermal energy storages are becoming more and more important as a key component in concentrating solar power plants. Packed bed storages represent an economically viable large scale energy storage solution. The present work deals with the analysis and optimization of a packed bed thermal energy storage. The influence of quasi-dynamic boundary conditions on the storage thermodynamic performance is evaluated. The Levelized Cost of Storage is innovatively applied to thermal energy storage design. A complete methodology to design packed bed thermal energy storage is proposed. In doing so, a comprehensive multi-objective optimization of an industrial scale packed bed is performed. The results show that quasi-dynamic boundary conditions lead to a reduction of around 5% of the storage thermal efficiency. Contrarily, the effect of the investigated design variables over the TES LCoS optimization is only slightly influenced by quasi-dynamic boundary conditions. Aspect ratio between 0.75 and 0.9 would maximize the storage thermal efficiency, while low preliminary efficiency around 0.47 would minimize the Levelized Cost of Storage. This work testifies that quasi-dynamic boundary conditions should be taken into considerations when optimizing thermal energy storage. The Levelized Cost of Storage could be also considered as a more reliable performance indicator for packed bed thermal energy storage, as it is less dependent on variable boundary conditions.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 36, article id 102441
Keywords [en]
Packed bed, Thermal energy storage, Design methodology, Levelized cost of storage, Multi-objective optimization
National Category
Energy Engineering
Research subject
Energy Technology; Industrial Engineering and Management
Identifiers
URN: urn:nbn:se:kth:diva-291450DOI: 10.1016/j.est.2021.102441ISI: 000635490700002Scopus ID: 2-s2.0-85102035683OAI: oai:DiVA.org:kth-291450DiVA, id: diva2:1536793
Funder
Swedish Energy Agency, P43284-1
Note

QC 20250326

Available from: 2021-03-12 Created: 2021-03-12 Last updated: 2025-03-26Bibliographically approved
In thesis
1. Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
Open this publication in new window or tab >>Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-temperature thermal energy storage could enable widespread exploitation of renewable energy sources, providing the required energy flexibility. Technology and component development is needed to enhance the storage thermo-dynamic performance, and identify key design features. Similarly, system-level integration studies are required to fully understand the techno-economic potential of high-temperature thermal energy storage as integrated into different energy systems. This research work focuses on the development of an innovative packed bed high-temperature thermal energy storage and a multi-level investigation of the potential of this technology. The integration and techno-economic performance of a packed bed thermal energy storage have been studied focusing primarily on its application within concentrating solar power plants. Numerical studies and experimental tests have been conducted assessing the suitability of various coatings to optimize the heat transfer in high-temperature packed beds. A comprehensive design of an innovative packed bed thermal energy storage prototype and its experimental evaluation have been presented. Adapted numerical models have also been validated based on the experimental results, providing the ground for further technology development.The outcomes of this research work show that packed bed thermal energy storage could be a key component in air-driven concentrating solar powerplants, granting high capacity factor while limiting the capital costs. The designed radial flow packed bed storage showed thermal efficiency of about72 % and extremely low-pressure drops. Thermocline degradation control strategies and proper packing have been highlighted as key aspects to target for further development. This research also highlights that accurate boundary conditions should be accounted for when designing packed bed thermal energy storage. Innovative figures of merit, such as the Levelized Cost ofStorage, should be included in the design process. The outcomes of this work show also that coatings could be exploited to modify the particle surface properties while optimizing the heat transfer within packed bed units. In particular, high emissivity coatings could enhance the effective thermal conductivity, while coatings with low thermal emissivity could be exploited as a form of passive thermocline control. Finally, this work testifies that high temperature packed bed could represent a techno-economically valuable energy storage solution. Optimized packed bed designs and their system integration could enable higher renewable penetration, as well as the recovery of a large amount of waste heat from the hard-to-abate and energy-intensive industrial sector.

Abstract [sv]

Lagring av termisk energi vid hög temperatur kan möjliggöra en omfattande exploatering av förnybara energikällor, vilket ger den erforderliga energiflexibiliteten för ett klimatneutralt samhälle. Teknik och komponentutveckling behövs för att maximera den termodynamiska prestandan för lagring och för att identifiera viktiga designparametrar. På samma sätt krävs integrationsstudier på systemnivå för att fullt ut förstå den tekno-ekonomiska potentialen vid lagring av termisk energi vid hög temperatur.

Detta forskningsarbete fokuserar på utveckling och provning av en innovativ lagringsteknologi av värmeenergi i packade bäddar och en undersökning av potentialen för denna teknologi. Integrationen och den teknikekonomiska prestandan för en högtempererad termisk bädd har studerats i samband med anläggningar för koncentrerad solkraft. Numeriska studier och experimentella tester har genomförts för att bedöma prestandan av olika partikelytskikt i bäddmaterialet och för att optimera värmeöverföringen i termiska bäddar med hög temperatur. Den omfattande designen av en innovativ prototyp för lagring av högtemperatur-värme med packade bäddar och dess experimentella utvärdering presenteras. Anpassade numeriska modeller har också validerats baserat på experimentella resultat, vilket ger grunden för ytterligare teknikutveckling.

Resultaten av detta forskningsarbete visar att lagring av termisk energi för packade bäddar kan vara en nyckelteknologi i luftdrivna koncentrerade solkraftverk, då dessa levererar en hög kapacitetsfaktor samtidigt som kapitalkostnaderna begränsas. Den i detta arbete utvecklade innovativa radialflödesbädden visade en effektivitet på cirka 72 % vid extremt låga tryckfall. Termokline-kontroll och en noggrann och välfördelad packning har lyfts fram som viktiga aspekter att rikta in vidare utveckling på. Exakta flödesgränsskiktsförhållanden bör också beaktas vid konstruktion av termisk energilagring i packade bäddar. Nya nyckeltal som föreslås i detta arbete, till exempel den nivellerade lagringskostnaden, bör ingå i designprocessen eftersom de visas vara mindre beroende av specifika driftförhållanden. Partikelytskikt med hög emissivitet kan utnyttjas för att förbättra den effektiva värmeledningsförmågan. Medan ytskikt med minskande värmeemissivitet kan utnyttjas som en form av passiv termokline-kontroll.

Slutsatsen av detta arbete är att högtempererade packade bäddar skulle kunna representera en tekniskt och ekonomiskt värdefull energilagringslösning. Optimerade packade bädd-designer och deras systemintegration skulle kunna möjliggöra högre penetration av förnybar energi, såväl som återvinning av en stor mängd spillvärme från den energiintensiva industrisektorn.

 

Nyckelord

Värmeenergilagring, packad bädd, teknikekonomisk analys, komponentdesign, experimentell utvärdering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 295
Series
TRITA-ITM-AVL ; 2022:4
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-309660 (URN)978-91-8040-169-2 (ISBN)
Public defence
2022-04-01, M3 / https://kth-se.zoom.us/j/68531114425, Brinellvägen 64, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, P43284-1
Available from: 2022-03-17 Created: 2022-03-08 Last updated: 2022-09-13Bibliographically approved

Open Access in DiVA

fulltext(4982 kB)1821 downloads
File information
File name FULLTEXT01.pdfFile size 4982 kBChecksum SHA-512
ec5d90a30437a5ec135df4566637d541cfcdedb99a83c3f9a16dc74d1c6082ba2ede4764fc1e7baf328c4e71b8d6eaffebf92f9058a0806bcb5d41cc3473a8f9
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Trevisan, SilviaGuédez, RafaelLaumert, Björn

Search in DiVA

By author/editor
Trevisan, SilviaGuédez, RafaelLaumert, Björn
By organisation
Heat and Power TechnologyEnergy Technology
In the same journal
Journal of Energy Storage
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1832 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 574 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf