kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reliability-based design methodology for lined rock cavern depth using the response surface method
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-7643-7274
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-5372-7519
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-8152-6092
2020 (English)In: ISRM International Symposium - EUROCK 2020, International Society for Rock Mechanics , 2020Conference paper, Published paper (Refereed)
Abstract [en]

Efforts to decrease CO2 emissions in the Swedish steelmaking process involve the use of industrial quantities of hydrogen gas supplied from large-scale Lined Rock Cavern (LRC) storages in order to eliminate the use of fossil fuels. This storage must be placed at sufficient depth so that the overburden is able to resist the uplifting gas pressure from inside the cavern. Both the high reliability requirement and addressing the uncertainties related to the rock mass properties make it difficult to design for such structures. In this work, a reliability-based design methodology for the LRC depth specification using the Response surface (RS) method is presented. Geologic conditions of Sweden, i.e. hard rock, are considered and the analytical solution for the resistance to uplift includes the tensile strength of the failure surface in addition to the overburden weight pressure. The highest uncertainties are assumed to be related to the rock mass parameters and both the cavern radius and the maximum operational pressure are chosen to be the same as for the LRC in Skallen, in southwestern Sweden. Four random variables with varying correlation are used to estimate the acceptable cavern depth and the results are reasonable compared to previous experience. The efficiency of the RS method for the considered problem is observed both for required number of samples and accuracy, showing suitability to be used with more complex, difficult to evaluate, problems such as Finite Element models.

Place, publisher, year, edition, pages
International Society for Rock Mechanics , 2020.
Keywords [en]
HYBRIT fossil-free steel, Hydrogen gas storage, Lined Rock Cavern, Response surface method, Uplift, Caves, Fossil fuels, Gas emissions, Hydrogen fuels, Industrial emissions, Reliability, Rock mechanics, Rocks, Surface properties, Tensile strength, Geologic conditions, Lined rock cavern (LRC), Maximum operational pressures, Reliability based design, Rock mass parameters, Rock mass properties, Varying-correlations, Design
National Category
Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-290834Scopus ID: 2-s2.0-85097596224OAI: oai:DiVA.org:kth-290834DiVA, id: diva2:1539230
Conference
ISRM International Symposium - EUROCK 2020, 14 June 2020 through 19 June 2020
Note

Part of proceedings: ISBN 978-82-8208-072-9, QC 20221107

Available from: 2021-03-23 Created: 2021-03-23 Last updated: 2022-11-14Bibliographically approved
In thesis
1. Modeling aspects of reliability-based design of lined rock caverns
Open this publication in new window or tab >>Modeling aspects of reliability-based design of lined rock caverns
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The storage of large quantities of hydrogen gas in underground lined rock caverns (LRCs) could contribute to an efficient supply of fossil-free energy. The consequences of failure of such storage can be catastrophic, so representative predictive models and a small probability of failure are needed for the LRC design. However, the available predictive models are simplified. On top of that, the calculation of a small probability of failure is challenging on its own, and becomes more difficult when combined with representative numerical models, which are often computationally demanding.

The purpose of this thesis is to develop a reliability-based design tool for LRC gas storages to ensure that societal safety requirements are met. For the development of this LRC design tool, the research issues are related to the prediction of the rock cavern response to a high internal gas pressure; interaction between LRC components; suitability of reliability-based calculation methods for the LRC design; and, effect of uncertainties on the probability of failure of the LRC design.

The results show that the available analytical model to predict the rock cavern response is only applicable for idealized geological conditions and geometries, so numerical models are needed. Finite element (FE) models are therefore developed to account for the complex interaction between LRC components, including the influence of opening of discrete rock joints on the strain concentrations in the steel lining. The adaptive directional importance sampling (ADIS) method is identified to be suitable to perform reliability-based analysis with FE models, requiring only a small number of samples for sufficiently accurate estimations of small probabilities of failure. The structural reliability of the LRC design is found to be sensitive to the rock mass quality and the correlation between geological properties.

Abstract [sv]

Lagring av stora mängder vätgas i underjordiska inklädda bergrum (LRC)skulle kunna bidra till en effektiv försörjning av fossilfri energi. Konsekvenserna av läckage i sådana lager kan vara katastrofala, så braberäkningsmodeller behövs för att kunna verifiera att brottsannolikheten i LRC är tillräckligt liten. De tillgängliga beräkningsmodellerna är dock förenklade. Dessutom är beräkningen av små brottsannolikheter utmanande i sig och blir ännu svårare i kombination med representativa numeriska modeller, eftersom sådana modeller kräver långa beräkningstider.

Syftet med denna doktorsavhandling är att utveckla ett sannlikhetsbaserat designverktyg för att uppfylla de säkerhets krav som ställs vid lagring av trycksatt gas i LRC. De specifika forskningsfrågorna är relaterade till modellerandet av bergrummets mekaniska beteende; interaktionen mellan LRC-komponenter; lämpligheten av sannolikhetsbaserade beräkningsmetoder för LRC-designen; samt effekten av osäkerheter på sannolikheten för brott i LRC-designen.

Resultaten visar att den befintliga analytiska modellen för att modellera bergrummets beteende endast är tillämpbar för idealiserade geologiska förhållanden och geometrier, vilket indikerar att numeriska modeller behövs. Sådana modeller har därför utvecklats för att ta hänsyn tilli nteraktionen mellan LRC-komponenter, vilka beaktar hur öppning av bergssprickor påverkar stålinklädnadens töjning. Den adaptiva riktade viktningssamplingsmetoden (ADIS) har identifierats vara lämplig för att utföra sannolikhetsbaserade analyser med FE-modellerna, eftersom ADIS kan ge tillräckligt exakta uppskattningar av små brottsannolikheter trots få körningar av den numeriska modellen. Brottsannolikhetsberäkningarna har visat sig vara känsliga för främst bergmassans kvalitet och korrelationen mellan geologiska egenskaper.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 85
Series
TRITA-ABE-DLT ; 2242
Keywords
Lined rock cavern, reliability-based design, analytical modeling, finite element modeling, underground gas storage, Inklädda bergrum, tillförlitlighetsbaserad design, analytisk modellering, finita elementmodellering, underjordisk gaslagring
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-321073 (URN)978-91-8040-404-4 (ISBN)
Public defence
2022-12-02, D2, Lindstedtsvägen 9, KTH Campus, https://kth-se.zoom.us/j/64410297205, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 42684-2 and P2022-00209
Note

QC 221110

Available from: 2022-11-10 Created: 2022-11-04 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Scopushttps://onepetro.org/ISRMEUROCK/proceedings-abstract/EUROCK20/All-EUROCK20/ISRM-EUROCK-2020-163/447396

Authority records

Damasceno, Davi RodriguesSpross, JohanJohansson, Fredrik

Search in DiVA

By author/editor
Damasceno, Davi RodriguesSpross, JohanJohansson, Fredrik
By organisation
Soil and Rock Mechanics
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 978 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf