kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical detection of trace silver
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0003-1503-4783
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.ORCID iD: 0000-0003-3220-4318
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-3858-8466
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-1221-3906
2021 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 374, article id 137929Article in journal (Refereed) Published
Abstract [en]

Increasing utilization of silver and silver nanoparticles (AgNPs) in daily processes and products has led to a significant growth in scientific interest in methods for monitoring silver. In particular, the amount of silver ions (Ag +) released to the environment is known to have a detrimental effect on aquatic ecology, and thus some control actions have been implemented in recent years; for example, the manufacturing industry is now required to control and certify the quantity of AgNPs present in products. Electrochemical sensors are well suited to the task of silver monitoring due to several beneficial properties, including low costs, fast measurements, and facile adaptation to miniaturized, portable instrumentation. The predominant method for electrochemical silver determination involves potentiometric ion selective electrodes (ISEs) and voltammetric measurements. Reviewing the literature of the last ten years reveals significant improvements in the analytical performance of electrochemical sensors, mainly related to the development of new protocols, selective receptors, and electrode materials. Remarkably, ISEs with limits of detection (LOD) in the nanomolar range have been reported, employing careful control of ion fluxes across the membrane interfaces. What's more, sub-nanomolar LODs are attainable by stripping voltammetry using either ligand-based deposition strategies or thin layer membranes coupled to conducting polymers. Selectivity has also been optimized through the membrane composition of ISEs, with special focus on Ag+ ionophores. Furthermore, novel voltammetric methods allow for discrimination between Ag+ and AgNPs. However, there is still a dearth of studies applying such electrochemical sensors to on-site water analysis, and hence, further research is needed in order to translate these laboratory scale achievements to real-world contexts. Overall, this review describes the state-of-the-art in electrochemical silver detection, and provides a comprehensive description of those aspects contributing to the further development and improvement of analytical performance.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 374, article id 137929
Keywords [en]
Silver, Trace amounts, Ion-selective electrodes, Stripping voltammetry
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-293013DOI: 10.1016/j.electacta.2021.137929ISI: 000633032400008Scopus ID: 2-s2.0-85101092672OAI: oai:DiVA.org:kth-293013DiVA, id: diva2:1545603
Note

QC 20210420

Available from: 2021-04-20 Created: 2021-04-20 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Electrochemical detection of trace metals: from traditional techniques to new ultrathin membrane electrodes
Open this publication in new window or tab >>Electrochemical detection of trace metals: from traditional techniques to new ultrathin membrane electrodes
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Accurate detection of trace metals in environmental waters is an analytical challenge that is still open for the time being. The current state of the field reveals the predominance of the so-called hanging mercury drop electrode (HMDE) for multi-metal detection by means of anodic stripping voltammetry (ASV) readout. Being aware of the high toxicity of mercury and the high risk of a serious environmental footprint when water measurements are performed with the HMDE, in the past years, the electrochemistry field has rapidly moved towards the provision of tangible alternatives. Yet, none of the proposed methodologies has reached appropriate maturation and/or analytical features to substitute the use of the HMDE in the detection of trace metal ions in water.

The investigations presented in this thesis are framed within the direction of new analytical strategies for the detection of trace metals in water, with special focus on the silver ion (Ag+). Voltammetric ion-selective electrodes (ISEs) with a working mechanism conceived on the basis of interconnected charge-transfer (CT) and ion-transfer (IT) processes are selected for such purpose due to their unique characteristics towards decentralized measurements.

The first chapter of the thesis aims to provide a general background about electrochemistry measurements of ions, providing special attention to all-solid-state voltammetric ISEs based on ultrathin membranes that provide the CT–IT mechanism. Fundaments about ASV and the use of the HMDE for trace metal detection are also revised. Of particular interest is the case of Ag+ determination, which is not fully addressed with the HMDE. Accordingly, the state-of-the-art of electrochemical analysis of trace Ag+ has been established (Paper I).

The second chapter shows the experimental details and the third chapter presents and discusses all the results obtained in this thesis.

The first section is about a new analytical strategy for nanomolar detection of Ag+ in waters by coupling a silver-selective electrode (AgSE) based on a CT–IT mechanism with IT stripping voltammetry readout (Paper II). Specifically, the IT occurs via providing the CT process in electrodes that are modified with a redox-active conductive polymer and an ultrathin silver-selective membrane placed on top. Thus, the CT–IT tandem in voltammetric ISEs is unprecedently demonstrated for the detection of Ag+ in different water samples.

The second section is based on the improvement of the limit of detection of the developed AgSE to detect sub-nanomolar concentration of Ag+ even in the presence of high interference levels, e.g., sodium ion (Paper III). Through the reduction of the total ion-exchange capacity of the ultrathin membrane, it is possible to increase the effectiveness towards the intake of Ag+ versus sodium ions (Na+) when IT stripping voltammetry is applied. The resulting ISE displayed a limit of detection of 0.05 nM, with a linear range of response up to 10 nM and is successfully applied for the analysis of Ag+ in several water samples, including seawater.

The third section presents the investigation of the HMDE for multi-metal detection at trace levels in soil waters while establishing the fundaments, features and controversies of the technique (Paper IV). The entire replacement of the HMDE will only occur when multi-metal trace detection is provided by a sole electrode or an electrode array able to provide similar analytical characteristics, which are collected in this thesis, while avoiding the use of mercury or any other pollutant in the electrode manufacturing.

The fourth section inquiries the possibility of using voltammetric ISE based on interconnected CT–IT processes for other trace metals, in particular lead and copper ions (Pb2+ and Cu2+) (Paper V). Despite more work being necessary in that direction, preliminary insights have revealed the potential of the CT–IT technique developed in this thesis towards multi-metal detection either with the incorporation in the membrane of multiple ionophores with different selectivity profiles for each metal or with a multi-sensor array. Accordingly, the research work presented in this thesis has a strong potential towards future investigations in this direction.

Abstract [sv]

Noggrann detektering av spårmetaller i miljövatten är en analytisk utmaning som fortfarande är öppen för tillfället. Fältets nuvarande tillstånd avslöjar övervägande för den så kallade hängande kvicksilver fall elektroden (HMDE) för detektering av flera metaller med hjälp av anodisk strippning voltammetry (ASV) avläsning. Att vara medveten om kvicksilvers höga toxicitet och den höga risken för ett allvarligt miljömässigt fotavtryck när vattenmätningar utförs med HMDE, under de senaste åren, har elektrokemifältet snabbt gått mot tillhandahållande av konkreta alternativ. Ändå har ingen av de föreslagna metoderna nått lämplig mognad och / eller analytiska egenskaper för att ersätta användningen av HMDE vid detektering av spårmetalljoner i vatten.

Undersökningarna som presenteras i denna avhandling är inramade i riktning mot nya analytiska strategier för detektion av spårmetaller i vatten, med särskilt fokus på silverjonen (Ag+). Voltammetriska jonselektiva elektroder (ISE) med en arbetsmekanism utformad på grundval av sammankopplade laddningsöverförings- (CT) och jonöverföringsprocesser (IT) väljs för detta ändamål på grund av deras unika egenskaper mot decentraliserade mätningar.

Det första kapitlet i avhandlingen syftar till att ge en allmän bakgrund om elektrokemimätningar av joner, med särskild uppmärksamhet åt full-state-voltammetriska ISE-baserade på ultratunnamembran som tillhandahåller CT–IT mekanismen. Grunden för ASV och användningen av HMDE för spårmetalldetektering revideras också. Av särskilt intresse är fallet med Ag+ bestämning, som inte behandlas fullständigt med HMDE. Följaktligen har den senaste tekniken för elektrokemisk analys av spår Ag+ fastställts (Paper I).

Det andra kapitlet visar de experimentella detaljerna och det tredje kapitlet presenterar och diskuterar alla resultat som erhållits i denna avhandling.

Det första avsnittet presenterar en ny analytisk strategi för nanomolär detektering av Ag+ i vatten genom att koppla en silverselektiv elektrod (AgSE) baserad på en CT–IT mekanism med avläsning av voltammetri för jonöverföring (Paper II). Specifikt inträffar IT genom att tillhandahålla CT processen i elektroder som är modifierade med en redoxaktiv ledande polymer och ett ultratunt silverselektivt membran som är lämpligt ovanpå. Således demonstreras CT–IT tandem i voltammetriska ISE utan motstycke för detektering av Ag+ i olika vattenprover.

Det andra avsnittet är baserat på förbättringen av detektionsgränsen för utvecklad AgSE för att detektera sub-nanomolär koncentration av Ag+ även i närvaro av höga interferensnivåer, t.ex. natriumjon (Paper III). Genom8minskningen av det ultratunna membranets totala jonbyteskapacitet är det möjligt att öka effektiviteten mot intaget av Ag+ kontra natriumjoner (Na+) när IT-strippande voltammetri appliceras. Den resulterande ISE visade en detektionsgräns på 0,05 nM, med ett linjärt responsområde upp till 10 nM och appliceras framgångsrikt för analys av Ag+ i flera vattenprover, inklusive havsvatten.

Det tredje avsnittet presenterar utredningen av HMDE för detektering av flera metaller vid spårnivåer i markvatten samtidigt som grunden, funktionerna och kontroverserna för tekniken fastställs (Paper IV). Hela utbytet av HMDE kommer endast att inträffa när spårningsdetektering av flera metaller tillhandahålls av en enda elektrod eller en elektroduppsättning som kan ge liknande analytiska egenskaper som samlas in i detta kapitel, samtidigt som man undviker användning av kvicksilver eller andra föroreningar i elektrodtillverkningen.

I det fjärde avsnittet undersöks möjligheten att använda voltametrisk ISE baserat på sammankopplade CT–IT processer för andra spårmetaller, i synnerhet bly- och kopparjoner (Pb2+ och Cu2+) (Paper V). Trots att mer arbete är nödvändigt i den riktningen har preliminära insikter avslöjat potentialen för CT–IT tekniken som utvecklats i denna avhandling motmultimetaldetektering antigen med införlivande i membranet av flera jonoforer med olika selektivitetsprofiler för varje metall eller med en multisensor array. Följaktligen har forskningsarbetet som presenteras i denna avhandling en stark potential för framtida utredningar i denna riktning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 103
Series
TRITA-CBH-FOU ; 2021:16
Keywords
ion-selective electrodes, ion-stripping voltammetry, ultrathin membranes, interconnected ion-transfer and charge-transfer processes, trace metals, environmental waters, jonselektiva elektroder, jon-strippande voltammetri, ultratunna membran, sammankopplade jonöverförings- och laddningsöverförings-processer, spårmetaller; miljövatten
National Category
Natural Sciences Analytical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-294153 (URN)978-91-7873-842-7 (ISBN)
Public defence
2021-06-04, https://kth-se.zoom.us/j/66670518289, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2021-05-11

Available from: 2021-05-11 Created: 2021-05-10 Last updated: 2022-07-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Xu, KequanPérez Ràfols, ClaraCuartero, MariaCrespo, Gaston A.

Search in DiVA

By author/editor
Xu, KequanPérez Ràfols, ClaraCuartero, MariaCrespo, Gaston A.
By organisation
Applied Physical ChemistryChemistry
In the same journal
Electrochimica Acta
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf