kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds
Keio Univ, Yokohama, Kanagawa, Japan.;Ochanomizu Univ, Fac Core Res, Tokyo, Japan..
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0002-1559-3692
KTH. Univ Sci & Technol China, Hefei, Peoples R China..
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-0975-6253
Show others and affiliations
2021 (English)In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 17, no 7, p. 794-800Article in journal (Refereed) Published
Abstract [en]

Structures that are periodic on a microscale in three dimensions are abundant in nature, for example, in the cellular arrays that make up living tissue. Such structures can also be engineered, appearing in smart materials(1-4), photonic crystals(5), chemical reactors(6), and medical(7) and biomimetic(8) technologies. Here we report that fluid-fluid interfacial energy drives three-dimensional (3D) structure emergence in a micropillar scaffold. This finding offers a rapid and scalable way of transforming a simple pillar scaffold into an intricate 3D structure that is periodic on a microscale, comprising a solid microscaffold, a dispersed fluid and a continuous fluid. Structures generated with this technique exhibit a set of unique features, including a stationary internal liquid-liquid interface. Using this approach, we create structures with an internal liquid surface in a regime of interest for liquid-liquid catalysis. We also synthesize soft composites in solid, liquid and gas combinations that have previously not been shown, including actuator materials with temperature-tunable microscale pores. We further demonstrate the potential of this method for constructing 3D materials that mimic tissue with an unprecedented level of control, and for microencapsulating human cells at densities that address an unresolved challenge in cell therapy.

Place, publisher, year, edition, pages
Springer Nature , 2021. Vol. 17, no 7, p. 794-800
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-296638DOI: 10.1038/s41567-021-01204-4ISI: 000631498200002Scopus ID: 2-s2.0-85103112237OAI: oai:DiVA.org:kth-296638DiVA, id: diva2:1563432
Note

QC 20220329

Available from: 2021-06-10 Created: 2021-06-10 Last updated: 2024-01-18Bibliographically approved
In thesis
1. Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
Open this publication in new window or tab >>Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The organisation of fluids in small compartments is ubiquitous in nature, such as in the cellular composition of all life. This work explores several engineering avenues where microscale fluid compartmentalization can bring novel material properties or novel functionality in life sciences or medicine. 

Here, we introduce four unique compartmentalization methods: 1) 3D fluid self-organisation in microscaffolds (FLUID3EAMS), 2) 2D microcapillary arrays on a dipstick (Digital Dipstick), 3) a sliding microfluidic platform with cross-flow (Slip-X-Chip), and 4) compartmentalization by cutting of soft solid matter (Solidify & Cut). These methods were used in a wide range of applications. 

Within the area of smart materials, we applied FLUID3EAMS to synthesize materials with temperature-tuneable permeability and surface energy and to establish, in a well-controlled fashion, tissue-like materials in the form of 3D droplet interface bilayer networks. Solidify & Cut was used to form soft composites with a new type of magnetic behaviour, rotation-induced ferromagnetism, that allows easy reprogramming of the magnetization of magnetopolymers. 

Within the area of medical diagnostics, we applied Digital Dipstick to perform rapid digital bacterial culture in a dipstick format and obtained clinically relevant diagnostic results on samples from patients with a urinary tract infection. Furthermore, Slip-X-Chip enables particle concentration and washing as new functions in sliding microfluidic platforms, which significantly expands their potential application area. 

Finally, within the area of cell therapy, we explored the microencapsulation of high concentrations of therapeutic cells and presented a novel technique to fabricate core-shell microcapsules by exploiting the superior material properties of spider silk membranes. 

Abstract [sv]

Organisering av vätskor i små fack är allmänt förekommande i nature, t.ex. i den cellulära sammansättningen av allt liv. Det här arbetet utforskar ett flertal ingenjörsmässiga tillvägagångssätt där organisering av vätska på mikroskala kan frambringa nya egenskaper hos material eller uppnå ny funktionalitet i life science eller medicin.

Här introduceras fyra unika sätt att dela upp vätskor: 1) 3-Dimensionell självorganisation av vätskor i mikrostrukturer (FLUID3EAMS), 2) Mikrokapillära 2D-matriser på en mätsticka (Digital Dipstick), 3) en glidande mikrofluidisk platform med tvärflöde (Slip-X-Chip), och 4) uppdelning genom skärande av mjuk solid material (Solidify & Cut). De här metoderna användes i flertalet applikationsområden. 

Inom området smarta material applicerade vi FLUID3EAMS för att syntetisera material med permeabilitet och ytenergi som kunde styras med temperatur och för att etablera, i välkontrollerade former, vävnadslika material i form av ett nätverk av 3-Dimensionella dubbellager av droppgränssnitt. 

Inom området medicinsk diagnostic, applicerade vi Digital Dipstick för att utföra snabb, digital odling av bakteriekulturer i ett mätstickeformat och uppnådde kliniskt relevanta diagnostiska resultat från patienter med urinvägsinfektion. En vidareutveckling av detta koncept, Slip-X-Chip, möjliggör partikelkoncentration och sköljning som tillagda funktioner i glidande mikrofluidiska plattformar, vilket väsentligt utökar deras potentiella användningsområden. 

 Slutligen, inom området cellterapi, utforskade vi mikro-inkapsling av höga koncentrationer av terapeutiska celler och presenterade en ny teknik att framställa core-shell mikrokapslar genom att utnyttja de överlägsna materialegenskaperna hos silkesmembran från spindlar. 

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2022. p. 65
Series
TRITA-EECS-AVL ; 2022:2
Keywords
Microfluidics, microfabrication, compartmentalization, partitioning, droplet microfluidics, self-assembly, 3D microarrays, soft composites, beads, particles, core-shell particle, point-of-care, diagnostics, dipstick, digital bioassays, lab-on-a-chip, urinary tract infection, bacteria detection, E. coli, cell encapsulation, hydrogel, cell therapy, spider silk, magnetic metamaterials., Mikrofluidik, mikrotillverkning, kompartmentalisering, partitionering, droppmikrofluidik, självmontering, 3D-mikromatriser, mjuka kompositer, pärlor, partiklar, kärna-skalpartikel, vårdpunkt, diagnostik, mätsticka, digitala bioanalyser, laboration-a-chip, urinvägsinfektion, bakteriedetektering, E. coli, cellinkapsling, hydrogel, cellterapi, spindelsilke, magnetiska metamaterial.
National Category
Engineering and Technology Biomaterials Science Biomedical Laboratory Science/Technology Composite Science and Engineering Other Electrical Engineering, Electronic Engineering, Information Engineering Medical Biotechnology Nano Technology
Identifiers
urn:nbn:se:kth:diva-307246 (URN)978-91-8040-105-0 (ISBN)
Public defence
2022-02-11, M2, Brinellvägen 64, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20220120

Available from: 2022-01-20 Created: 2022-01-19 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Iseri, EmreKaya, KeremBuchmann, SebastianSundin, JohanBagheri, ShervinHerland, Annavan der Wijngaart, Wouter

Search in DiVA

By author/editor
Iseri, EmreWei, XiKaya, KeremDi Dio, GiacomoOsaki, ToshihisaKamiya, KokiNikolakopoulou, PolyxeniBuchmann, SebastianSundin, JohanBagheri, ShervinHerland, Annavan der Wijngaart, Wouter
By organisation
Micro and NanosystemsKTHFluid Mechanics and Engineering Acoustics
In the same journal
Nature Physics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 297 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf