kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigating the effect of the equivalent conicity function's nonlinearity on the dynamic behaviour of a rail vehicle under typical service conditions
KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Rail Vehicles.ORCID iD: 0000-0001-5644-248x
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0002-0875-3520
KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Rail Vehicles.ORCID iD: 0000-0002-2571-4662
Department of Technology & Environment, Swedish Transport Administration, Västertås, Sweden.ORCID iD: 0000-0001-5407-2438
Show others and affiliations
2022 (English)In: Vehicle System Dynamics, ISSN 0042-3114, E-ISSN 1744-5159, Vol. 60, no 10, p. 3484-3503Article in journal (Refereed) Published
Abstract [en]

Generally, the equivalent conicity function (ECF) is denoted by equivalent conicity at 3mm (λ3mm) and a Nonlinearity Parameter (NP). NP describes the nonlinearity of the ECF and its influence on a vehicle design is explored thoroughly, however, NP’s role in vehicle and track maintenance is not researched yet. This paper investigates the influence of track maintenance actions on vehicle dynamics with help of NP vs λ3mm scatter plots of ECF database. The ECF database is constructed by combining measured worn wheel and rail profile pairs of the Swedish high-speed vehicle and rail network, respectively. The ECF database revealed an inverse relationship between λ3mm and NP, i.e., NP is negative for larger λ3mm values. The combination of negative NP and high λ3mm causes reduction in the vehicle’s nonlinear critical speed and vehicle often exhibit the unstable running on the Swedish rail network. Thus, the occurrence of ECF with negative NP and high λ3mm is undersirable and the undesirable ECF can be converted into desirable ECF by grinding the rail, which converts ECF’s into positive NP and low λ3mm combinations. Thus, the NP parameter along with the λ3mm must be considered in track maintenance decisions.

Place, publisher, year, edition, pages
Taylor & Francis, 2022. Vol. 60, no 10, p. 3484-3503
Keywords [en]
Vehicle–track interaction, vehicle running instability, wheel–rail contacte, quivalent conicity (EC), nonlinear parameter (NP), wheel and rail profile maintenance
National Category
Vehicle and Aerospace Engineering
Research subject
Järnvägsgruppen - Fordonsteknik
Identifiers
URN: urn:nbn:se:kth:diva-299580DOI: 10.1080/00423114.2021.1962537ISI: 000684122100001Scopus ID: 2-s2.0-85112217044OAI: oai:DiVA.org:kth-299580DiVA, id: diva2:1584535
Projects
IN2TRACK2
Funder
EU, Horizon 2020, 826255 (IN2TRACK2)
Note

QC 20210813

Available from: 2021-08-12 Created: 2021-08-12 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Onboard condition monitoring of vehicle-track dynamic interaction using machine learning: Enabling the railway industry’s digital transformation
Open this publication in new window or tab >>Onboard condition monitoring of vehicle-track dynamic interaction using machine learning: Enabling the railway industry’s digital transformation
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Tillståndsövervakning ombord av dynamisk interaktion mellan fordon och spår med hjälp av maskininlärning : Möjliggörande av järnvägsbranschens digitala transformation
Abstract [en]

The railway sector’s reliability, availability, maintainability, and safety (RAMS) can significantly improve by adopting condition based maintenance (CBM). In the CBM regime, maintenance decisions are driven by condition monitoring (CM) of the asset. This thesis proposes machine learning (ML) based onboard CM (OCM) algorithms for CM of vehicle-track dynamic interaction via vehicle response (VR). More specifically, the algorithms are developed to monitor track irregularities (TI) and vehicle running instability incidences (VRII) via VR.

CM of TI from onboard accelerations is a cost-effective method for daily surveillance of tracks. Most of the latest research is focused on monitoring vertical irregularity via vertical accelerations. Less attention is given to monitoring alignment level (AL) and cross level (CL) track irregularities. The PhD thesis proposes an ML based OCM algorithm to identify track sections with AL and CL  track irregularities exceeding maintenance thresholds via bogie frame accelerations (BFAs). In this thesis, the OCM algorithm’s supervised ML models are trained on BFAs’ datasets synthesized with multibody simulation (MBS) of a high-speed diagnostic vehicle. Furthermore, the trained ML models and OCM algorithm are validated with measurements acquired by the same high-speed vehicle. The proposed OCM algorithm shows excellent performance in track quality surveillance only from BFAs. 

OCM of vehicle running instability (VRI) is important to ensure safety and onboard ride comfort. The latest research focuses on designing OCM algorithms for detecting VRI, but these OCM algorithms lack fault diagnosis (FD) of detected VRII. The PhD thesis proposes various OCM algorithms under an "intelligent vehicle running instability detection algorithm" (iVRIDA) umbrella to detect VRII and diagnose corresponding root causes via carbody accelerations. The occurrence of VRI during regular operation across a whole train fleet is an anomaly. Thus, an unsupervised anomaly detection (AD) based iVRIDA algorithm is proposed and later extended as iVRIDA-fleet for vehicle fleetwide application. The proposed OCM algorithms iVRIDA and iVRIDA-fleet are verified by onboard measurements of a European high-speed vehicle and the Swedish X2000 vehicle fleet.

The thesis contributes towards the digitalization of vehicle and track maintenance by enabling adaptation of the CBM regime.

Abstract [sv]

Järnvägssektorns tillförlitlighet, tillgänglighet, underhållsmässighet och säkerhet (RAMS) kan förbättras avsevärt genom att införa tillståndsbaserat underhåll (CBM). I CBM-regimen drivs underhållsbeslut av tillståndsövervakning (CM) av tillgången. Denna avhandling föreslår maskininlärning (ML) baserade omboard CM (OCM) algoritmer för CM av fordon-spår dynamisk interaktion via fordonsrespons (VR). Mer specifikt utvecklas algoritmerna för att övervaka spårlägesfel (TI) och fordonsinstabilitets (VRII) via VR.

CM av TI från accelerationer ombord är en kostnadseffektiv metod för daglig övervakning av spår. Det mesta av den senaste forskningen är inriktad på att övervaka vertikal oregelbundenhet via vertikala accelerationer. Mindre uppmärksamhet ägnas åt övervakning av oegentligheter i lateralled (AL) och rälsförhöiningsfel (CL). Doktorsavhandlingen föreslår en ML-baserad OCM-algoritm för att identifiera spårsektioner med AL- och CL-spåroregelbundenheter som överskrider underhållströsklar via boggiramaccelerationer (BFA). I denna avhandling tränas OCM-algoritmens övervakade ML-modeller på BFAs' data syntetiserade med flerkropps-simulering (MBS) av ett höghastighetsfordon. Dessutom valideras de tränade ML-modellerna och OCM-algoritmen med mätningar som erhållets från samma höghastighetsfordon. Den föreslagna OCM-algoritmen visar utmärkt prestanda vid övervakning av spårkvalitet endast från BFA.

OCM för fordonets gånginstabilitet (VRI) är viktigt för att säkerställa säkerhet och komfort. Den senaste forskningen fokuserar på att designa OCM-algoritmer för att upptäcka VRI, men dessa OCM-algoritmer saknar feldiagnos (FD) av detekterad VRII. Doktorsavhandlingen föreslår olika OCM-algoritmer under ett "intelligent vehicle running instability detection algorithm" (iVRIDA) paraply för att upptäcka VRII och diagnostisera motsvarande grundorsaker via korgsaccelerationer. Förekomsten av VRI under regelbunden drift över en hel tågflotta är en anomali. Således föreslås en oövervakad anomalidetektering (AD) baserad iVRIDA algoritm och utvidgas senare som iVRIDA-fleet för fordonsparksomfattande applikation.

De föreslagna OCM-algoritmerna iVRIDA och iVRIDA-fleet verifieras genom mätningar ombord av ett europeiskt höghastighetsfordon och den svenska fordonsflottan X2000.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 1-95
Series
TRITA-SCI-FOU ; 2023:19
Keywords
Active preventive maintenance, intelligent fault diagnosis, anomaly detection, vehicle fleet, track irregularities, vehicle hunting, wheel-rail interface.
National Category
Vehicle and Aerospace Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-326616 (URN)978-91-8040-542-3 (ISBN)
Public defence
2023-06-01, https://kth-se.zoom.us/j/68259826119, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, Shift2Rail Projects IN2TRACK2, IN2TRACK3, PIVOT2Swedish Transport Administration, Research Excellence Area 1 and RV-29 via the KTH Railway Group
Available from: 2023-05-10 Created: 2023-05-09 Last updated: 2025-02-14Bibliographically approved

Open Access in DiVA

fulltext(4402 kB)721 downloads
File information
File name FULLTEXT01.pdfFile size 4402 kBChecksum SHA-512
35261fd3f4819aee731b14eaa224310ca4467d5692bffdbd9de1965f28a4e409490e06966cdd19a821dbb0a599049022a6e00a70b777f650d796aaf175cfaa47
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Kulkarni, RohanQazizadeh, AlirezaBerg, Mats

Search in DiVA

By author/editor
Kulkarni, RohanQazizadeh, AlirezaBerg, MatsDirks, BabetteIngemar, Persson
By organisation
The KTH Railway GroupRail VehiclesVehicle Engineering and Solid MechanicsVehicle Dynamics
In the same journal
Vehicle System Dynamics
Vehicle and Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 722 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 530 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf