kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable development of hot-pressed all-lignocellulose composites—comparing wood fibers and nanofibers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Material and Surface Design Department, Bioeconomy and Health Division, RISE Research Institutes of Sweden, Stockholm, SE-114 86, Sweden.ORCID iD: 0000-0002-2984-7702
SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-5818-2378
2021 (English)In: Polymers, E-ISSN 2073-4360, Vol. 13, no 16, article id 2747Article, review/survey (Refereed) Published
Abstract [en]

Low-porosity materials based on hot-pressed wood fibers or nanocellulose fibrils (no polymer matrix) represent a new concept for eco-friendly materials with interesting mechanical properties. For the replacement of fossil-based materials, physical properties of wood fiber materials need to be improved. In addition, the carbon footprint and cumulative energy required to produce the material also needs to be reduced compared with fossil-based composites, e.g., glass fiber composites. Lignin-containing fibers and nanofibers are of high yield and special interest for development of more sustainable materials technologies. The present mini-review provides a short analysis of the potential. Different extraction routes of lignin-containing wood fibers are discussed, different processing methods, and the properties of resulting fiber materials. Comparisons are made with analogous lignin-containing nanofiber materials, where mechanical properties and eco-indicators are emphasized. Higher lignin content may promote eco-friendly attributes and improve interfiber or interfibril bonding in fiber materials, for improved mechanical performance.

Place, publisher, year, edition, pages
MDPI , 2021. Vol. 13, no 16, article id 2747
Keywords [en]
nanocellulose, nanofibrillar, microfibrillar lignocellulose, lignin-containing wood fibers, unbleached kraft pulp, molded fiber, biocomposite, mechanical properties, cumulative energy demand (CED), sustainability
National Category
Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-302041DOI: 10.3390/polym13162747ISI: 000690140900001PubMedID: 34451285Scopus ID: 2-s2.0-85113305732OAI: oai:DiVA.org:kth-302041DiVA, id: diva2:1595690
Note

QC 20220420

Available from: 2021-09-20 Created: 2021-09-20 Last updated: 2024-01-17Bibliographically approved
In thesis
1. Lignocellulose Biocomposites– A Comparison of Wood Fibers and Microfibrillated Lignocellulose
Open this publication in new window or tab >>Lignocellulose Biocomposites– A Comparison of Wood Fibers and Microfibrillated Lignocellulose
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

All-lignocellulose composites, meaning densified fiber or fibril materials without added binder, show interesting mechanical properties and can be eco-friendly. Composites based on hot-pressed microfibrillated lignocellulose (MFLC) and lignocellulosic wood fiber (WF) reinforcements are compared with respect to processing, structure, mechanical properties, and eco-indicators. Also, these reinforcements are compared in hot-pressed degradable lignocellulosic crosslinked polycaprolactone (c-PCL) biocomposites based on in-situ polymerization of new caprolactone oligomers.

The intermediate lignin content (≈11%) was favorable for MFLC preparation, although the cumulative energy demand was high for mechanical disintegration from unbleached softwood kraft pulp. The mechanical properties were much better for random-in-plane MFLC compared with WF composites due to lower porosity, better interfiber bonding, and smaller-scale defects. Data for strain-field development during tensile tests was in support of these findings. For c-PCL biocomposites, much higher ultimate strength was obtained for the c-PCL/MFLC composites compared with c-PCL/WF. The most important reason was the strainhardening behavior combined with higher strain to failure, since the scale of developing defects was much smaller with MFLC reinforcement.

Abstract [sv]

Kompositer baserade på enbart lignocellulosa, dvs pressade fiber- eller fibrillmaterial utan tillsatt bindemedel, har intressanta mekaniska egenskaper och är ofta miljövänliga material. Varmpressad mikrofibrillerad lignocellulosa (MFLC) och varmpressade träfibrer (WF) jämförs med avseende på process, struktur, mekaniska egenskaper och ekoindikatorer. De jämförs också i varmpressade nedbrytbara c-PCL-biokompositer baserade på in-situ polymerisation av nya kaprolakton-oligomerer. 

Ett optimum i ligninhalt (≈11%) var gynnsamt för MFLC-framställning, även om det kumulativa energibehovet var högt för mekanisk sönderdelning till MFLC från oblekt barrvedsmassa. De mekaniska egenskaperna var mycket bättre för MFLC jämfört med WF-kompositer för slumpmässig fiberorientering i planet. Orsakerna är lägre porositet, bättre bindning mellan fibrer och att storleken på materialdefekterna är små för MFLC. Data för töjningsfältsutveckling under dragförsök gav stöd för dessa förklaringar. För biokompositer baserade på c-PCL var hållfastheten mycket högre för c-PCL/MFLC-kompositer jämfört med cPCL/WF. Den viktigaste orsaken var starkt töjningshårdnande i kombination med högre töjning till brott, vilket troligen beror på att defekterna som utvecklas under mekanisk belastning av c-PCL/MFLC är mycket mindre än för c-PCL/WF, vid jämförbar töjning.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 63
Series
TRITA-CBH-FOU ; 2022:30
National Category
Composite Science and Engineering Polymer Technologies Paper, Pulp and Fiber Technology Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-312263 (URN)978-91-8040-227-9 (ISBN)
Public defence
2022-06-10, Kollegiesalen, Brinellvägen 6, KTH campus, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2022-05-17

Available from: 2022-05-17 Created: 2022-05-16 Last updated: 2022-10-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Oliaei, ErfanBerglund, Lars

Search in DiVA

By author/editor
Oliaei, ErfanBerglund, Lars
By organisation
BiocompositesWallenberg Wood Science Center
In the same journal
Polymers
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf