kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of Sensor Types and Angular Velocity Computational Methods in Field Measurements of Occupational Upper Arm and Trunk Postures and Movements
Karolinska Inst, IMM Inst Environm Med, SE-17177 Stockholm, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics. Karolinska Inst, IMM Inst Environm Med, SE-17177 Stockholm, Sweden..ORCID iD: 0000-0001-5979-5504
Karolinska Inst, IMM Inst Environm Med, SE-17177 Stockholm, Sweden.;Stockholm Cty Council, Ctr Occupat & Environm Med, SE-11365 Stockholm, Sweden.;Chalmers Univ Technol, Dept Ind & Mat Sci, SE-41296 Gothenburg, Sweden..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics. Karolinska Inst, IMM Inst Environm Med, SE-17177 Stockholm, Sweden..ORCID iD: 0000-0001-5777-4232
2021 (English)In: Sensors, E-ISSN 1424-8220, Vol. 21, no 16, article id 5527Article in journal (Refereed) Published
Abstract [en]

Accelerometer-based inclinometers have dominated kinematic measurements in previous field studies, while the use of inertial measurement units that additionally include gyroscopes is rapidly increasing. Recent laboratory studies suggest that these two sensor types and the two commonly used angular velocity computational methods may produce substantially different results. The aim of this study was, therefore, to evaluate the effects of sensor types and angular velocity computational methods on the measures of work postures and movements in a real occupational setting. Half-workday recordings of arm and trunk postures, and movements from 38 warehouse workers were compared using two sensor types: accelerometers versus accelerometers with gyroscopes-and using two angular velocity computational methods, i.e., inclination velocity versus generalized velocity. The results showed an overall small difference (<2 degrees and value independent) for posture percentiles between the two sensor types, but substantial differences in movement percentiles both between the sensor types and between the angular computational methods. For example, the group mean of the 50th percentiles were for accelerometers: 71 degrees/s (generalized velocity) and 33 degrees/s (inclination velocity)-and for accelerometers with gyroscopes: 31 degrees/s (generalized velocity) and 16 degrees/s (inclination velocity). The significant effects of sensor types and angular computational methods on angular velocity measures in field work are important in inter-study comparisons and in comparisons to recommended threshold limit values.

Place, publisher, year, edition, pages
MDPI , 2021. Vol. 21, no 16, article id 5527
Keywords [en]
inertial measurement unit, field measurement, accelerometer, sensor fusion, kinematics, threshold limit value, ergonomics, workload, biomechanics, musculoskeletal disorders
National Category
Occupational Health and Environmental Health
Identifiers
URN: urn:nbn:se:kth:diva-302033DOI: 10.3390/s21165527ISI: 000690012400001PubMedID: 34450967Scopus ID: 2-s2.0-85112537417OAI: oai:DiVA.org:kth-302033DiVA, id: diva2:1595805
Note

QC 20210920

Available from: 2021-09-20 Created: 2021-09-20 Last updated: 2022-10-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lind, Carl MikaelForsman, Mikael

Search in DiVA

By author/editor
Lind, Carl MikaelForsman, Mikael
By organisation
Ergonomics
In the same journal
Sensors
Occupational Health and Environmental Health

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf