kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward Rapid Detection of Viable Bacteria in Whole Blood for Early Sepsis Diagnostics and Susceptibility Testing
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. Karolinska Inst, AIMES Ctr Adv Integrated Med & Engn Sci, S-17165 Stockholm, Sweden.;KTH Royal Inst Technol, S-17165 Stockholm, Sweden..ORCID iD: 0000-0001-5348-3526
Univ Autonoma Barcelona, Inst Microelect Barcelona IMB CNM, CSIC, Barcelona 08193, Spain..
Univ Autonoma Barcelona, Inst Microelect Barcelona IMB CNM, CSIC, Barcelona 08193, Spain..ORCID iD: 0000-0002-4223-8442
Univ Autonoma Barcelona, Dept Quim, Barcelona 08193, Spain..ORCID iD: 0000-0003-2128-7007
Show others and affiliations
2021 (English)In: ACS Sensors, E-ISSN 2379-3694, Vol. 6, no 9, p. 3357-3366Article in journal (Refereed) Published
Abstract [en]

Sepsis is a serious bloodstream infection where the immunity of the host body is compromised, leading to organ failure and death of the patient. In early sepsis, the concentration of bacteria is very low and the time of diagnosis is very critical since mortality increases exponentially with every hour after infection. Common culture-based methods fail in fast bacteria determination, while recent rapid diagnostic methods are expensive and prone to false positives. In this work, we present a sepsis kit for fast detection of bacteria in whole blood, here achieved by combining selective cell lysis and a sensitive colorimetric approach detecting as low as 10(3) CFU/mL bacteria in less than 5 h. Homemade selective cell lysis buffer (combination of saponin and sodium cholate) allows fast processing of whole blood in 5 min while maintaining bacteria alive (100% viability). After filtration, retained bacteria on filter paper are incubated under constant illumination with the electrochromic precursors, i.e., ferricyanide and ferric ammonium citrate. Viable bacteria metabolically reduce iron(III) complexes, initiating a photocatalytic cascade toward Prussian blue formation. As a proof of concept, we combine this method with antibiotic susceptibility testing to determine the minimum inhibitory concentration (MIC) using two antibiotics (ampicillin and gentamicin). Although this kit is used to demonstrate its applicability to sepsis, this approach is expected to impact other key sectors such as hygiene evaluation, microbial contaminated food/beverage, or UTI, among others.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2021. Vol. 6, no 9, p. 3357-3366
Keywords [en]
sepsis, bacteria, E. coli, selective cell lysis, Prussian blue, colorimetric, blood
National Category
Microbiology in the medical area
Identifiers
URN: urn:nbn:se:kth:diva-303539DOI: 10.1021/acssensors.1c01219ISI: 000702090500024PubMedID: 34410700Scopus ID: 2-s2.0-85114518814OAI: oai:DiVA.org:kth-303539DiVA, id: diva2:1605290
Note

QC 20211022

Available from: 2021-10-22 Created: 2021-10-22 Last updated: 2024-03-05Bibliographically approved
In thesis
1. Novel microfluidic based sample preparation methods for rapid separation and detection of viable bacteria from blood for sepsis diagnostics
Open this publication in new window or tab >>Novel microfluidic based sample preparation methods for rapid separation and detection of viable bacteria from blood for sepsis diagnostics
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sepsis is a serious medical condition characterized by a whole-body inflammatory response caused by bloodstream infection. The final stage of sepsis can lead to septic shock, multiple organ failure, and death. In early sepsis, the concentration of bacteria in the bloodstream is typically low, making diagnosis challenging. Rapid diagnosis of sepsis is crucial as there is an exponential increase in mortality for every hour delay in the appropriate antibiotics administration. Common culture-based methods fail in fast bacteria determination as it takes up to 24-72 hr. On the other hand, recent rapid nucleic acid-based diagnostic methods are prone to false positives from human DNA mainly due to a lack of efficient sample preparation methods.

 This Ph.D. work was aimed at the development of novel sample preparation methods for rapid and efficient separation and identification of bacteria from  blood for sepsis diagnostics. To address this, two different approaches were explored. In the first approach, a label-free, size-based, passive elasto-inertial microfluidics (visco-elastic flows) method was developed (Paper I and II). Initially, behavior of particles were studied in solution containing polyethylene oxide (PEO) using different spiral designs (Paper I). By using the knowledge from paper I, a spiral design was used to preposition the particles at the outer wall of the inlet using PEO as sheath and we showed that a particle of a certain size remains fully focused at the outer wall throughout the channel length. The optimized parameters were extended to demonstrate that when bacteria is spiked into diluted blood, blood remains fully focused at the outer wall throughout the channel length while smaller bacteria differentially migrate towards the inner wall for rapid separation. Using E.coli spiked into the diluted blood sample, bacteria separation is demonstrated at an efficiency of 82 to 90% depending on the blood dilution using a single spiral chip (Paper-II). The second approach (Paper III) involves a selective cell lysis method where lysis buffer composition is optimized to selectively lyse blood cells in 5 min while maintaining bacterial viability. The lysed blood cells were filtered through a filter paper to capture viable bacteria. The captured bacteria on the filter paper was detected using Prussian blue (PB)  colorimetric analysis. In PB color-based assay, viable bacteria metabolically reduce iron (III) complexes, initiating a photo-catalytic cascade toward PB formation on the filter paper visible to the naked eye. Using this approach it was possible to detect bacteria by the naked eye. This approach was also further optimized to perform antibiotic susceptibility testing to determine the minimum inhibitory concentration (MIC). 

Furthermore, as a step towards rapid genomic analysis, a novel method combining ITP-RCA (Isotachophoresis – Rolling Circle Amplification) was studied and optimized for real-time amplification (RCA), focusing and detection of bacterial DNA in a microfluidic channel (Paper IV). In this study we demonstrate rapid and increased sensitivity of bacterial DNA detection. This method has a huge potential to accelerate the time needed for DNA based analysis for infectious diseases.

 All in all, the ability of these sample preparation methods for rapid and effective separation and detection of key pathogens in blood will help in decreasing the time of sepsis diagnosis and aid towards efficient phenotypic or genotypic analysis. 

Abstract [sv]

Sepsis, eller blodförgiftning, är ett allvarligt medicinskt tillstånd som kännetecknas av en inflammatorisk respons i hela kroppen orsakad av blodomloppsinfektion. Det sista steget av sepsis kan leda till septisk chock, multipel organsvikt med potentiell dödlig utgång. I tidig sepsis är koncentrationen av bakterier i blodomloppet mycket låg, vilket gör provberedningen mycket utmananande. Snabb diagnos av sepsis är avgörande eftersom varje timmes försenad antibiotikaadministration leder till ökad dödlighet. Vanliga bakteriekultur-baserade metoder kräver 24-72 timmar för bakteriebestämning. Nya, DNA och RNA-baserade, diagnostiska metoder kan ge snabbare svar, men är känsliga för kontaminerande mänskligt DNA, som ger falskt positiva svar på grund av bristen på effektiva provberedningsmetoder. Denna doktorsavhandling syftar till att utveckla nya provberedningsmetoder för snabb och effektiv separation och identifiering av bakterier från blodprov för sepsis diagnostik. Utmaningen inom provberedning behandlas här med två olika tillvägagångssätt. I det första tillvägagångssättet användes inmärkningsfri, storleksbaserad, passiv elasto-inertiell mikrofluidik (viskoelastiska flöden) för att studera beteendet hos större partiklar i polyetenoxid (PEO)-lösningar i olika spiralkonstruktioner (artikel I) . Genom att använda kunskapen från papper I, utvecklades en optimerad spiral konstruktion för att på ett effektivt sätt separera bakterier från blod prov. I denna design förblir blodkropparna fokuserade vid ytterväggen längs hela kanalens längd, medan mindre bakterier migrerar mot innerväggen och kan separeras. E.coli kan separeras ur utspädda blodprover med ett enda spiralchip (artikel -II) med en effektivitet av 82 till 90% beroende på utspädning. Det andra tillvägagångssättet (artikel III) använder en selektiv cell-lyseringsmetod där en ny lysis buffert optimerades för att selektivt lysera blodceller på 5 minuter, samtidigt som bakteriell viabilitet upprätthålls. De lyserade blodcellerna filtrerades genom ett filterpapper för att fånga upp levande bakterier. Med hjälp av färgbaserad analys (Berlinerblått) reducerar levande bakterier metaboliskt järn (III)-komplex, och initierar en fotokatalytisk kaskad mot Berlinerblått-bildning på filterpapperet synligt med blotta ögat. Med hjälp av detta tillvägagångssätt var det möjligt att upptäcka bakterier med blotta ögat. Detta tillvägagångssätt optimerades också ytterligare för att utföra antibiotika-succeptibilitetstest för att bestämma minsta bakterie-tillväxthämmande koncentration. Som ett steg mot snabb genomisk analys studerades och optimerades en ny metod kallad Isotakofores-Rolling Circle Amplification för realtids isotermisk DNA amplifiering (Rolling circle amplification), med fokus och detektion av bakteriellt DNA i en rak mikrofluidisk kanal (artikel IV). 8 Sammantaget kommer dessa utvecklade provberedningsmetoder för snabb och effektiv separation och detektion av viktiga patogener i blod med ytterligare information om minsta bakterie-tillväxt-hämmande koncentration att minska tiden för sepsisdiagnostik och underlätta analyser i framtiden.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 113
Series
TRITA-CBH-FOU ; 2021:40
Keywords
microfluidics
National Category
Natural Sciences
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-304683 (URN)978-91-8040-006-0 (ISBN)
Public defence
2021-12-03, Air and Fire, Science for Life laboratory, Tomtebodavägen 23A, Solna, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2021-11-10

Available from: 2021-11-10 Created: 2021-11-10 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Iyengar, Sharath NarayanaRussom, Aman

Search in DiVA

By author/editor
Iyengar, Sharath NarayanaFerrer-Vilanova, AmparoGuirado, GonzaloRussom, Aman
By organisation
Science for Life Laboratory, SciLifeLabNano Biotechnology
In the same journal
ACS Sensors
Microbiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 283 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf