kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study of metallic coatings on ceramic particles for thermal emissivity control and effective thermal conductivity enhancement in packed bed thermal energy storage
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4932-7103
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4134-3520
KTH, School of Industrial Engineering and Management (ITM), Production Engineering.ORCID iD: 0000-0002-2582-9910
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-7193-5303
2022 (English)In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 234, article id 111458Article in journal (Refereed) Published
Abstract [en]

Ceramic particles-based packed bed systems are attracting the interest from various high-temperature applications such as thermal energy storage, nuclear cooling reactors, and catalytic support structures. Considering that these systems work above 600 ◦C, thermal radiation becomes significant or even the major heat transfer mechanism. The use of coatings with different thermal and optical properties could represent a way to tune and enhance the thermodynamic performances of the packed bed systems. In this study, the thermal stability of several metallic (Inconel, Nitinol, and Stainless Steel) based coatings is investigated at both high temperature and cyclic thermal conditions. Consequently, the optical properties and their temperature dependence are measured. The results show that both Nitinol and Stainless Steel coatings have excellent thermal stability at temperatures as high as 1000 ◦C and after multiple thermal cycles. Contrarily, Inconel (particularly 625) based coatings show abundant coating degradation. The investigated coatings also offer a wide range of thermal emissivity (between0.6 and 0.9 in the temperature range of 400–1000 ◦C), and variable trends against increasing temperature. This work is a stepping-stone towards further detailed experimental and modelling studies on the heat transfer enhancement in different ceramic-based packed bed applications through using metallic coatings.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 234, article id 111458
Keywords [en]
Surfaces, Coatings and Films, Renewable Energy, Sustainability and the Environment, Electronic, Optical and Magnetic Materials
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-304083DOI: 10.1016/j.solmat.2021.111458ISI: 000718166000003Scopus ID: 2-s2.0-85117705661OAI: oai:DiVA.org:kth-304083DiVA, id: diva2:1606441
Funder
Swedish Energy Agency, P43284-1Swedish Energy Agency, P46287-1
Note

QC 20211103

Available from: 2021-10-27 Created: 2021-10-27 Last updated: 2024-01-17Bibliographically approved
In thesis
1. Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
Open this publication in new window or tab >>Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from material investigation to system analysis via innovative component design
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-temperature thermal energy storage could enable widespread exploitation of renewable energy sources, providing the required energy flexibility. Technology and component development is needed to enhance the storage thermo-dynamic performance, and identify key design features. Similarly, system-level integration studies are required to fully understand the techno-economic potential of high-temperature thermal energy storage as integrated into different energy systems. This research work focuses on the development of an innovative packed bed high-temperature thermal energy storage and a multi-level investigation of the potential of this technology. The integration and techno-economic performance of a packed bed thermal energy storage have been studied focusing primarily on its application within concentrating solar power plants. Numerical studies and experimental tests have been conducted assessing the suitability of various coatings to optimize the heat transfer in high-temperature packed beds. A comprehensive design of an innovative packed bed thermal energy storage prototype and its experimental evaluation have been presented. Adapted numerical models have also been validated based on the experimental results, providing the ground for further technology development.The outcomes of this research work show that packed bed thermal energy storage could be a key component in air-driven concentrating solar powerplants, granting high capacity factor while limiting the capital costs. The designed radial flow packed bed storage showed thermal efficiency of about72 % and extremely low-pressure drops. Thermocline degradation control strategies and proper packing have been highlighted as key aspects to target for further development. This research also highlights that accurate boundary conditions should be accounted for when designing packed bed thermal energy storage. Innovative figures of merit, such as the Levelized Cost ofStorage, should be included in the design process. The outcomes of this work show also that coatings could be exploited to modify the particle surface properties while optimizing the heat transfer within packed bed units. In particular, high emissivity coatings could enhance the effective thermal conductivity, while coatings with low thermal emissivity could be exploited as a form of passive thermocline control. Finally, this work testifies that high temperature packed bed could represent a techno-economically valuable energy storage solution. Optimized packed bed designs and their system integration could enable higher renewable penetration, as well as the recovery of a large amount of waste heat from the hard-to-abate and energy-intensive industrial sector.

Abstract [sv]

Lagring av termisk energi vid hög temperatur kan möjliggöra en omfattande exploatering av förnybara energikällor, vilket ger den erforderliga energiflexibiliteten för ett klimatneutralt samhälle. Teknik och komponentutveckling behövs för att maximera den termodynamiska prestandan för lagring och för att identifiera viktiga designparametrar. På samma sätt krävs integrationsstudier på systemnivå för att fullt ut förstå den tekno-ekonomiska potentialen vid lagring av termisk energi vid hög temperatur.

Detta forskningsarbete fokuserar på utveckling och provning av en innovativ lagringsteknologi av värmeenergi i packade bäddar och en undersökning av potentialen för denna teknologi. Integrationen och den teknikekonomiska prestandan för en högtempererad termisk bädd har studerats i samband med anläggningar för koncentrerad solkraft. Numeriska studier och experimentella tester har genomförts för att bedöma prestandan av olika partikelytskikt i bäddmaterialet och för att optimera värmeöverföringen i termiska bäddar med hög temperatur. Den omfattande designen av en innovativ prototyp för lagring av högtemperatur-värme med packade bäddar och dess experimentella utvärdering presenteras. Anpassade numeriska modeller har också validerats baserat på experimentella resultat, vilket ger grunden för ytterligare teknikutveckling.

Resultaten av detta forskningsarbete visar att lagring av termisk energi för packade bäddar kan vara en nyckelteknologi i luftdrivna koncentrerade solkraftverk, då dessa levererar en hög kapacitetsfaktor samtidigt som kapitalkostnaderna begränsas. Den i detta arbete utvecklade innovativa radialflödesbädden visade en effektivitet på cirka 72 % vid extremt låga tryckfall. Termokline-kontroll och en noggrann och välfördelad packning har lyfts fram som viktiga aspekter att rikta in vidare utveckling på. Exakta flödesgränsskiktsförhållanden bör också beaktas vid konstruktion av termisk energilagring i packade bäddar. Nya nyckeltal som föreslås i detta arbete, till exempel den nivellerade lagringskostnaden, bör ingå i designprocessen eftersom de visas vara mindre beroende av specifika driftförhållanden. Partikelytskikt med hög emissivitet kan utnyttjas för att förbättra den effektiva värmeledningsförmågan. Medan ytskikt med minskande värmeemissivitet kan utnyttjas som en form av passiv termokline-kontroll.

Slutsatsen av detta arbete är att högtempererade packade bäddar skulle kunna representera en tekniskt och ekonomiskt värdefull energilagringslösning. Optimerade packade bädd-designer och deras systemintegration skulle kunna möjliggöra högre penetration av förnybar energi, såväl som återvinning av en stor mängd spillvärme från den energiintensiva industrisektorn.

 

Nyckelord

Värmeenergilagring, packad bädd, teknikekonomisk analys, komponentdesign, experimentell utvärdering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 295
Series
TRITA-ITM-AVL ; 2022:4
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-309660 (URN)978-91-8040-169-2 (ISBN)
Public defence
2022-04-01, M3 / https://kth-se.zoom.us/j/68531114425, Brinellvägen 64, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, P43284-1
Available from: 2022-03-17 Created: 2022-03-08 Last updated: 2022-09-13Bibliographically approved

Open Access in DiVA

fulltext(9332 kB)395 downloads
File information
File name FULLTEXT01.pdfFile size 9332 kBChecksum SHA-512
523fdfe2870dc57a776e08b5c21b9e433a1f358eca18fcf5c81c5794d10c1bc4dddf550fc077e96111cbb8e7cb41232d44f6449e12f5c6222ccc720f979e11a2
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Trevisan, SilviaWang, WujunZhao, XiaoyuLaumert, Björn

Search in DiVA

By author/editor
Trevisan, SilviaWang, WujunZhao, XiaoyuLaumert, Björn
By organisation
Heat and Power TechnologyProduction Engineering
In the same journal
Solar Energy Materials and Solar Cells
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 395 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf