kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
System-Wide Impacts of Distributed Generation on Power System Operation: Data-Driven Approaches to Addressing the Challenges of Integrating Distributed Generation
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0003-4736-4760
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Deployment of distributed generation (DG) is happening at an increasing rate driven by both the need for the reduction of humanity's carbon footprint and economic opportunities. The trend of increasing penetration levels of DG has also introduced interdependence between the responsibilities of system operators and the owners of the generating units. To fully accommodate distributed generation in the system, these interdependencies and the accompanying operational challenges need to be addressed. At the same time, the development of information and communication technologies within power systems has enabled access to immense information collected from the grids, such as the wide-area synchrophasor measurements. To utilize the increasing amounts of collected information and address the challenges of DG integration, novel applications can be developed by using data-driven methodologies.  This thesis aims to investigate if such data-driven approaches are sufficiently reliable, timely and accurate to address the DG integration challenges appearing across the responsibility areas. 

To explore the capabilities of data-driven approaches, two impacts of DG were studied in this thesis. First, different types of islanding detection methods were proposed. The data-driven methods for computing sensitivity parameters as seen from a distribution-level generator were developed and integrated within a proposed local islanding detection method. It was shown that such estimation methods enable a reliable and timely islanding detection by the use of field measurements. Next, synchrophasor-based remote islanding detection methods were developed as a tool for the situational awareness of system operators. It was shown that the dimensionality of the voltage angle measurements can be utilized to distinguish between islanding and other types of events using a data-driven approach. 

The other impact of DG that was addressed is the modelling of distribution networks in dynamic studies of a transmission network. A large number of existing approaches to dynamic modelling were identified pointing to the need for a model structure selection procedure. Thus, a data-driven modelling approach that selects an optimal model structure and evaluates the uncertainty of the models' outputs was proposed. The models' uncertainty was then used to select only informative events for parameter identification and to thereby reduce its computational burden. The performance of the method was demonstrated by using it to derive an optimal equivalent model of a modified CIGRE network.

Through the aforementioned contributions, the thesis shows that the increasing observability of the systems enables data-driven methodologies to address the challenges of DG integration. 

Abstract [sv]

Utbyggnaden av distribuerad generering (DG) sker i en ökande takt, drivet av behovet av att minska mänsklighetens koldioxidavtryck och av ekonomiska möjligheter. Trenden med ökande penetrationsnivåer av DG har också infört ett ömsesidigt beroende mellan aktörerna i elsystsmet, inkluderande både producenter och nätägare. För att fullt ut kunna hantera DG i elsystemet måste dessa ömsesidiga beroenden och de åtföljande operativa utmaningarna åtgärdas. Parallellt med detta har utvecklingen av informations- och kommunikationsteknologier möjliggjort tillgång till enorma mängder data som samlats in från näten exempelvis synkroniserade fasvinkelmätningar. För att utnyttja de ökande mängderna insamlad information och möta utmaningarna med DG-integrationen, kan eventuellt nya applikationer utvecklas med hjälp av datadriven metodik. Denna avhandling syftar till att undersöka om de datadrivna tillvägagångssätten är tillräckligt tillförlitliga, snabba och precisa för att ta itu med de utmaningar som uppkommer på grund av DG-integrationen.

För att utforska fördelarna med datadrivna tillvägagångssätt studeras i denna avhandling två effekter av DG. Först presenterades olika typer av metoder för ödriftsdetektering. Datadrivna metoder för att beräkna känslighetsparametern för en generator på distributionsnivå utvecklades och integrerades i en lokal detekteringsmetod för ödrift. Det visades att sådana uppskattningsmetoder möjliggör en tillräcklig tillförlitlig och snabb detektering av ödrift genom användning av fältmätningar. Därefter utvecklades synkroniserad fasvinkel-baserade metoder för fjärrdetektering av ödrift som ett verktyg för systemoperatörerna. Resultaten visar att dimensionaliteten hos spänningsvinkelmätningarna kan användas för att skilja mellan ödrift och andra typer av händelser även då data-drivna metoder används. 

Den andra effekten av DG som togs upp är modelleringen av distributionsnät för dynamiska studier av transmissionsnät. Ett stort antal befintliga tillvägagångssätt för dynamisk modellering identifierades som pekade på behovet av en automatiserad metod för val av modellstruktur. Således föreslogs en modelleringsmetod som väljer den optimala modellstrukturen och utvärderar osäkerheten i modellernas resultat. Modellernas osäkerhet användes sedan för att endast välja informativa händelser för parameteridentifiering och därmed minska dess beräkningsbörda. Prestandan för den datadrivna metoden demonstrerades genom att härleda en optimal ekvivalent modell av ett modifierat CIGRE-nätverk.

Genom de tidigare nämnda bidragen visas det i avhandlingen att systemens ökande observerbarhet tillsammans med den datadrivna metodiken kan användas för att ta fram applikationer som kan möta utmaningarna med DG-integration.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. , p. 87
Series
TRITA-EECS-AVL ; 2022:6
Keywords [en]
data-driven modelling, distributed generation, dynamic equivalencing, islanding detection, reduced order modelling
Keywords [sv]
datadriven modellering, detektion av ödrift, distribuerad generation, dynamisk modellering, reducerad ordningsmodellering
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-307110ISBN: 978-91-8040-122-7 (print)OAI: oai:DiVA.org:kth-307110DiVA, id: diva2:1626719
Public defence
2022-02-11, https://kth-se.zoom.us/j/62736724589, Sten Velander, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20220117

Available from: 2022-01-17 Created: 2022-01-11 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Computation of sensitivity-based islanding detection parameters for synchronous generators
Open this publication in new window or tab >>Computation of sensitivity-based islanding detection parameters for synchronous generators
2021 (English)In: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 190, article id 106611Article in journal (Refereed) Published
Abstract [en]

Significant penetration levels of distributed energy resources increase the likelihood of continued operation of a power system island after an islanding event. It is important to employ adequate islanding detection methods to mitigate the adverse effects of unintentional islanding and possibly transition to a safe islanded mode of operation. This paper focuses on the computational aspects of a class of methods that utilizes a change in the sensitivity parameters as an indicator of islanding events. It is shown that the inherent properties of the measurement signals cause numerical issues for the computation of the sensitivity parameters. The paper also analyses three algorithms for estimation of the coefficients that overcome the numerical issues. The performance of the algorithms has been demonstrated using synthetically generated measurements. In addition, the data from field experiments has been used to further illustrate the practical viability of the algorithms. 

Place, publisher, year, edition, pages
Elsevier Ltd, 2021
Keywords
Distributed generation, Islanding detection, Kalman filter, Least squares, Sensitivity computation, Distributed power generation, Energy resources, Synchronous generators, Class of methods, Computational aspects, Distributed Energy Resources, Islanded mode of operations, Islanding detection methods, Penetration level, Sensitivity parameters, Parameter estimation
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-285303 (URN)10.1016/j.epsr.2020.106611 (DOI)000594665200018 ()2-s2.0-85088927118 (Scopus ID)
Note

QC 20201202

Available from: 2020-12-02 Created: 2020-12-02 Last updated: 2024-01-09Bibliographically approved
2. Bayesian Detection of Islanding Events Using Voltage Angle Measurements
Open this publication in new window or tab >>Bayesian Detection of Islanding Events Using Voltage Angle Measurements
2018 (English)In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2018, IEEE, 2018, article id 8587561Conference paper, Published paper (Refereed)
Abstract [en]

The growing presence of distributed generation in power systems increases the risk for the unintentional creation of electrical islands. It is important to apply reliable and quick is landing protection methods. At the same time, the deployment of phasor measurement units facilitates the usage of data-oriented techniques for the development of new wide-area protection applications, one of which is islanding protection. This paper presents a Bayesian approach to detecting an islanding event, which utilizes measurements of voltage angles at the system's buses. A model of mixtures of probabilistic principal component analysers has been fitted to the data using a variational inference algorithm and subsequently used for islanding detection. The proposed approach removes the need for setting parameters of the probabilistic model. The performance of the method is demonstrated on synthetic power system measurements.

Place, publisher, year, edition, pages
IEEE, 2018
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-245971 (URN)10.1109/SmartGridComm.2018.8587561 (DOI)000458801500076 ()2-s2.0-85061060271 (Scopus ID)978-1-5386-7954-8 (ISBN)
Conference
2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2018; Aalborg; Denmark; 29 October 2018 through 31 October 2018
Note

QC 20190314

Available from: 2019-03-14 Created: 2019-03-14 Last updated: 2022-06-26Bibliographically approved
3. Data-Driven Islanding Detection Using a Principal Subspace of Voltage Angle Differences
Open this publication in new window or tab >>Data-Driven Islanding Detection Using a Principal Subspace of Voltage Angle Differences
2021 (English)In: IEEE Transactions on Smart Grid, ISSN 1949-3053, E-ISSN 1949-3061, Vol. 12, no 5, p. 4250-4258Article in journal (Refereed) Published
Abstract [en]

The likelihood of an unintentional power system islanding is increased in systems with significant penetration of distributed generation. To mitigate the adverse effects of islanding, a quick and reliable islanding detection method is needed. This paper first analyzes covariance matrices of a linearized power system model, and relates them to the principal component analysis of experimentally obtained covariance matrices. Additionally, a new model-independent islanding detection method is proposed that uses measurements of voltage angle differences between multiple locations in the system. The angle differences are first preprocessed to remove the effects of nonstationarity. Thereafter, a probabilistic model of principal component analysis is trained using the acquired measurements. The principal and residual spaces extracted from the measurements are used to discriminate between islanding and other events in the system. The applicability of the proposed method is demonstrated by using real measurements gathered from several locations in a transmission grid.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Principal component analysis, Covariance matrices, Frequency measurement, Phasor measurement units, Power systems, Power measurement, Islanding, Bayes methods, phase angle differences, wide area monitoring
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-300828 (URN)10.1109/TSG.2021.3069287 (DOI)000686785700052 ()2-s2.0-85103783248 (Scopus ID)
Note

QC 20210929

Available from: 2021-09-29 Created: 2021-09-29 Last updated: 2022-06-25Bibliographically approved
4. Model Structure Selection and Validation for Dynamic Equivalencing of Distribution Networks
Open this publication in new window or tab >>Model Structure Selection and Validation for Dynamic Equivalencing of Distribution Networks
2021 (English)In: IEEE Transactions on Smart Grid, ISSN 1949-3053, E-ISSN 1949-3061Article in journal (Refereed) Accepted
Abstract [en]

Modelling of distribution networks has received a renewed interest due to the appearance of dynamic phenomena arising from the increasing penetration levels of distributed generation. The conflicting implications of a model’s parsimony and flexibility, required model accuracy, available a priori information, and the purpose of a model, are inherent in system modelling. To tackle these issues, different models and identification methods have been proposed with the aim of representing the response of distributed generation to system events. The number of proposed models points to the fact that no single model can represent all possible dynamic behaviour of distribution networks. To facilitate, and even automate, model structure selection, this paper proposes a method that sequentially processes system events and classifies them as informative or noninformative for parameter identification. The method then uses informative events for parameter identification while the noninformative ones are used for optimal model structure selection and validation. Such selected and validated models can then be used in operation for dynamic security assessment of a transmission system. The performance of the proposed method is demonstrated in the case of equivalencing of a distribution network with photovoltaic and wind generation. Author

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-307109 (URN)10.1109/tsg.2021.3135293 (DOI)000761224400047 ()2-s2.0-85121844600 (Scopus ID)
Funder
The Research Council of Norway, 280967
Note

QC 20220125

Available from: 2022-01-11 Created: 2022-01-11 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(2798 kB)1334 downloads
File information
File name FULLTEXT01.pdfFile size 2798 kBChecksum SHA-512
1ecc73d2be4ebf4279a39d989b731a49f10dca796474ee344f2ae31942a7fab725fa6811bcabb0757eb18d8eb289a729f3101a8605c4332e0228053e088faeb2
Type fulltextMimetype application/pdf

Authority records

Rabuzin, Tin

Search in DiVA

By author/editor
Rabuzin, Tin
By organisation
Electric Power and Energy Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1337 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1546 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf