kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Convergence of the Birkhoff normal form sometimes implies convergence of a normalizing transformation
Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA..
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-1810-4900
2022 (English)In: Ergodic Theory and Dynamical Systems, ISSN 0143-3857, E-ISSN 1469-4417, Vol. 42, no 3, p. 1166-1187Article in journal (Refereed) Published
Abstract [en]

Consider an analytic Hamiltonian system near its analytic invariant torus T-0 carrying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian at T-0 is convergent and has a particular form: it is an analytic function of its non-degenerate quadratic part. We prove that in this case there is an analytic canonical transformation-not just a formal power series-bringing the Hamiltonian into its Birkhoff normal form.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2022. Vol. 42, no 3, p. 1166-1187
Keywords [en]
nearly integrable Hamiltonian systems, Birkhoff normal form, convergence of the normalizing transformations
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-309059DOI: 10.1017/etds.2021.71ISI: 000750488900012Scopus ID: 2-s2.0-85112391799OAI: oai:DiVA.org:kth-309059DiVA, id: diva2:1639351
Note

QC 20220221

Available from: 2022-02-21 Created: 2022-02-21 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Saprykina, Maria

Search in DiVA

By author/editor
Saprykina, Maria
By organisation
Mathematics (Dept.)
In the same journal
Ergodic Theory and Dynamical Systems
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf