kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deconvolution of Spatial Gene Expression in Cancer
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology.ORCID iD: 0000-0002-0210-7886
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cancer is the second leading cause of death in the world, claiming nearly 10 million lives in 2020 alone. One of the main issues in anti-cancer treatment is the heterogeneity of the tumor microenvironment (TME). The TME consists of different cells that are critical for cancer development. Understanding the interactions and identity of these cells is vital to discovering the mechanisms for tumorigenesis. To fundamentally understand the development and mechanisms of the disease will help us in designing novel treatments moving forward. To study the TME, we need methods that both provide extensive information about the cellular profiles and their spatial location, in order to understand how they interact with each other. Single-cell RNA-seq (scRNA-seq) has provided extensive insights into the cellular composition of tumors. However, it requires dissociation of the cells and thus does not retain spatial information. There are several methods to study spatially resolved gene expression in tissues, but one that allows for untargeted and whole-transcriptome wide analysis is the in situ capturing method, Spatial transcriptomics (ST). Although this method allows us to know the location of the gene expression, the resolution is too low for single-cell analysis. With an initial capturing area of 100 μm, 3-30 cells are captured in each spot resulting in a mixture of cells giving rise to the gene expression. At this resolution, it is challenging to confidentially profile the cells, thus making it difficult to explore the cellular interactions fully. To fundamentally explore the TME, improvements need to be made.

In Paper I, we aimed to bridge the gap between ST and scRNA-seq by designing a new array with a capturing area of 2 μm. This new design increased the number of capture areas from 1007 to over 1.4 million and with over a 4000-fold improved resolution. We managed to get spatially resolved gene expression from mouse olfactory bulb (MOB) and breast tumor tissue at a sub-cellular resolution with this new design. Despite a low capture efficiency of around 1.3% per bead, we were able to identify differently expressed (DE) signatures specific to morphological layers, profile specific cell types and explore sub-cellular features. Paper II focuses on the information obtained from the widely available histological images. By integrating the spatial gene expression data from 23 different breast cancer patients with their morphological images via deep learning, we could predict gene expression on different samples solely from their histological images. This was further validated on external samples to ensure that it was applicable to other clinical data. In Paper III, we explored the biology of HER2-positive breast tumors by combining scRNA-seq with ST data from eight different HER2-positive patients. With this combinatorial approach, we studied the interactions of tumor-associated cell types and found tertiary lymphoid (TL)-like structures which have been shown to hold certain predictive power in treatment outcome. From this, we constructed a predictive model that could infer the presence of these TL-like structures across different tissue types and technical platforms. This was validated on external samples from breast cancer, rheumatoid arthritis and melanoma. Lastly, in Paper IV, we sought to improve upon the reproducibility and robustness of the method by automating the 10x Visium protocol on a robotic platform. To benchmark the protocol, we compared identical samples prepared both manually and with the automated approach and achieved high correlation scores of 0.995 and 0.990. By adapting the protocol on a Bravo Liquid Handling Platform, we were able to increase the throughput and robustness of the method and reduce hands-on time by over 80%.

Abstract [sv]

Cancer är världens näst vanligaste dödsorsak med nästan 10 miljoner dödsoffer under 2020. Ett av de största problemen med att behandla cancer är den höga graden av heterogenitet som finns inom mikromiljön av tumören. Tumörens mikromiljö består av flera olika celler som är avgörande för tumörens utveckling. Att veta identiteten på cellerna samt hur de interagerar är vitalt för att upptäcka de underliggande mekanismerna av cancerutveckling. Att fundamentalt förstå mekanismerna och utvecklingen av cancer ligger till grund för att vi ska kunna utveckla nya behandlingar i framtiden. För att kunna studera tumörens mikromiljö så krävs det metoder som både tillhandahåller omfattande information kring cellernas profil samt hur de är distribuerade jämtemot varandra för att förstå hur de interagerar. Med singel-cell RNA-sekvensering (scRNA-seq) så har man fått en omfattande bild av tumörers cellulära uppbyggnad men för att kunna utföra det krävs det att man dissocierar cellerna, vilket i sin tur gör att den spatiala informationen går förlorad. Det finns flera metoder som tillåter spatialt upplöst transkriptomik i vävnader men en som tillhandahåller opartisk analys av hela transkriptomet är en metod som blev döpt till Spatial Transcriptomics (ST). Även om metoden bevarar den spatiala koordinaten av genuttrycket så är upplösningen för låg för att kunna urskilja enskilda celler. Arean som fångar upp mRNAt är 100 µm, vilket fångar omkring 3–30 celler. Detta innebär att varje datapunkt innehåller genuttryck från flera celler vilket försvårar möjligheten att identifiera cellerna. För att förstå cellernas interaktioner och fundamentalt utforska tumörers mikromiljö så krävs det att metoden utvecklas. 

 

I Artikel I var vårt mål att föra ST närmare singel-cell analys genom att ändra den array som används för metoden. Den nya designen medförde en ökning av antalet areor där mRNAt kan fångas från 1007st till över 1,4 millioner och med en över 4000 gånger förbättrad upplösning. Vi kunde med denna array få spatialt upplöst genuttryck från vävnader av mushjärna och brösttumör med en upplösning på 2 µm. Trots en låg verkningsgrad på omkring 1,3% så lyckades vi identifiera skilda genuttryck som var specifika för vissa morfologiska regioner, specifika celltyper samt utforska egenskaper på en subcellulär nivå. Artikel II fokuserar på den information som kan fås genom histologiska bilder vilka är lättillgängliga. Genom att integrera det spatiala genuttrycket från 23 patienter med de tillhörande histologiska bilderna genom djup maskininlärning så kunde vi förutspå genuttrycket på andra prover endast baserat på deras histologiska bilder. Detta validerades på externa prover för att säkerhetsställa att de var applicerbart på kliniska prover. I Artikel III så utforskade vi biologin av HER2-positiva brösttumörer genom att kombinera scRNA-seq data med data från åtta olika HER2-positiva patienter genererat via ST. Med att kombinera de två så kunde vi utforska interaktioner mellan celler i tumören och fann tertiära lymfoid (TL)-liknande strukturer. Det har visats att dessa TL-strukturer är till viss del en förutsägande faktor när det gäller behandling. I och med detta så tog vi fram en modell för att hitta dessa TL-liknande strukturer i data från andra vävnader samt data genererat från en annan plattform. Detta validerades på externa prover från bröstcancer, reumatoid artrit och malignt melanom. Slutligen i Artikel IV så var vårt mål att förbättra reproducerbarheten samt robustheten av metoden genom att tillämpa den på en automatisk plattform. För att säkerhetsställa prestandan av det automatiserade protokollet så jämförde vi identiska prover förberedda både manuellt och automatiserat. Från detta fick vi höga korrelationskoefficienter på 0,995 och 0,990. Genom att anpassa protokollet på den plattform som heter ”Bravo Liquid Handling Platform” så lyckades vi öka robustheten och effektiviteten av metoden samt reducera den praktiska tiden i laboratoriet med över 80%.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. , p. 59
Series
TRITA-CBH-FOU ; 2022:20
Keywords [en]
Spatial transcriptomics, Gene expression, Cancer
National Category
Natural Sciences
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-309185ISBN: 978-91-8040-157-9 (print)OAI: oai:DiVA.org:kth-309185DiVA, id: diva2:1639909
Public defence
2022-03-25, Air and Fire, Tomtebodavägen 23A, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2022-02-22

Available from: 2022-02-22 Created: 2022-02-22 Last updated: 2022-06-25Bibliographically approved
List of papers
1. High-definition spatial transcriptomics for in situ tissue profiling
Open this publication in new window or tab >>High-definition spatial transcriptomics for in situ tissue profiling
Show others...
2019 (English)In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 16, no 10, p. 987-+Article in journal (Refereed) Published
Abstract [en]

Spatial and molecular characteristics determine tissue function, yet high-resolution methods to capture both concurrently are lacking. Here, we developed high-definition spatial transcriptomics, which captures RNA from histological tissue sections on a dense, spatially barcoded bead array. Each experiment recovers several hundred thousand transcriptcoupled spatial barcodes at 2-mu m resolution, as demonstrated in mouse brain and primary breast cancer. This opens the way to high-resolution spatial analysis of cells and tissues.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2019
National Category
Biological Sciences
Identifiers
urn:nbn:se:kth:diva-262787 (URN)10.1038/s41592-019-0548-y (DOI)000488225900027 ()31501547 (PubMedID)2-s2.0-85072716890 (Scopus ID)
Note

QC 20191022

Available from: 2019-10-22 Created: 2019-10-22 Last updated: 2024-03-18Bibliographically approved
2. Integrating spatial gene expression and breast tumour morphology via deep learning
Open this publication in new window or tab >>Integrating spatial gene expression and breast tumour morphology via deep learning
Show others...
2020 (English)In: Nature Biomedical Engineering, E-ISSN 2157-846X, Vol. 4, no 8, p. 827-834Article in journal (Refereed) Published
Abstract [en]

Spatial transcriptomics allows for the measurement of RNA abundance at a high spatial resolution, making it possible to systematically link the morphology of cellular neighbourhoods and spatially localized gene expression. Here, we report the development of a deep learning algorithm for the prediction of local gene expression from haematoxylin-and-eosin-stained histopathology images using a new dataset of 30,612 spatially resolved gene expression data matched to histopathology images from 23 patients with breast cancer. We identified over 100 genes, including known breast cancer biomarkers of intratumoral heterogeneity and the co-localization of tumour growth and immune activation, the expression of which can be predicted from the histopathology images at a resolution of 100 µm. We also show that the algorithm generalizes well to The Cancer Genome Atlas and to other breast cancer gene expression datasets without the need for re-training. Predicting the spatially resolved transcriptome of a tissue directly from tissue images may enable image-based screening for molecular biomarkers with spatial variation. 

Place, publisher, year, edition, pages
Nature Research, 2020
Keywords
Biomarkers, Diagnosis, Diseases, Gene expression, Learning algorithms, Medical imaging, Morphology, Tumors, Co-localizations, Gene Expression Data, High spatial resolution, Image-based screenings, Immune activation, Molecular biomarker, Spatial variations, Spatially resolved, Deep learning, transcriptome, tumor marker, Article, breast cancer, breast tissue, cancer tissue, clinical article, clinician, gene identification, histopathology, human, human tissue, protein localization, st net, transcriptomics, tumor growth
National Category
Medical Imaging
Identifiers
urn:nbn:se:kth:diva-286524 (URN)10.1038/s41551-020-0578-x (DOI)000542072600002 ()32572199 (PubMedID)2-s2.0-85086705289 (Scopus ID)
Note

QC 20201217

Available from: 2020-12-17 Created: 2020-12-17 Last updated: 2025-02-09Bibliographically approved
3. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
Open this publication in new window or tab >>Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions
Show others...
2021 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 12, no 1, article id 6012Article in journal (Refereed) Published
Abstract [en]

In the past decades, transcriptomic studies have revolutionized cancer treatment and diagnosis. However, tumor sequencing strategies typically result in loss of spatial information, critical to understand cell interactions and their functional relevance. To address this, we investigate spatial gene expression in HER2-positive breast tumors using Spatial Transcriptomics technology. We show that expression-based clustering enables data-driven tumor annotation and assessment of intra- and interpatient heterogeneity; from which we discover shared gene signatures for immune and tumor processes. By integration with single cell data, we spatially map tumor-associated cell types to find tertiary lymphoid-like structures, and a type I interferon response overlapping with regions of T-cell and macrophage subset colocalization. We construct a predictive model to infer presence of tertiary lymphoid-like structures, applicable across tissue types and technical platforms. Taken together, we combine different data modalities to define a high resolution map of cellular interactions in tumors and provide tools generalizing across tissues and diseases. While transcriptomics have enhanced our understanding for cancer, spatial transcriptomics enable the characterisation of cellular interactions. Here, the authors integrate single cell data with spatial information for HER2 + tumours and develop tools for the prediction of interactions between tumour-infiltrating cells.

Place, publisher, year, edition, pages
Springer Nature, 2021
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:kth:diva-304218 (URN)10.1038/s41467-021-26271-2 (DOI)000707430400001 ()34650042 (PubMedID)2-s2.0-85117381388 (Scopus ID)
Note

QC 20211103

Available from: 2021-11-03 Created: 2021-11-03 Last updated: 2023-03-28Bibliographically approved
4. Enabling automated and reproducible spatially resolved transcriptomics at scale
Open this publication in new window or tab >>Enabling automated and reproducible spatially resolved transcriptomics at scale
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Tissue spatial information is an essential component to reach a holistic overview of gene expression mechanisms. The sequencing-based Spatial transcriptomics approach allows to spatially barcode the whole transcriptome of tissue sections using microarray glass slides. However, manual preparation of high-quality tissue sequencing libraries is time-consuming and subjected to technical variability. Here, we present an automated adaptation of the 10x Genomics Visium library construction on the widely used Agilent Bravo Liquid Handling Platform. Compared to the manual Visium library preparation, our automated approach reduces hands-on time by over 80% and provides higher throughput and robustness. Our automated Visium library preparation protocol provides a new strategy to standardize spatially resolved transcriptomics analysis of tissues at scale. 

Keywords
Spatial transcriptomics, Automation
National Category
Medical Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-309188 (URN)
Note

QC 20220223

Available from: 2022-02-22 Created: 2022-02-22 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(4019 kB)1213 downloads
File information
File name FULLTEXT01.pdfFile size 4019 kBChecksum SHA-512
c1a9586b6059267fd81367e58cd1fc4f997df027f7b91a2936552ff960ae367656bec1f4592bb8308df3d00c1b7bf95018ceebf69b415d2db6da6932d8859b11
Type fulltextMimetype application/pdf

Authority records

Stenbeck, Linnea

Search in DiVA

By author/editor
Stenbeck, Linnea
By organisation
Gene Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1219 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1303 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf