kth.sePublications
Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
UFOMap: For Consumers and Producers of Stuff and Things in a Tree
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-4815-9689
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-1170-7162
(English)Manuscript (preprint) (Other academic)
Abstract [en]

For autonomous robots to have a deeper understanding of their environment, non-geometric, or semantic information, is required. However, there is currently a gap between the producers and consumers of dense semantic maps. Where producers are focused on reconstruction accuracy but not usability. We introduce an efficient semantic extension of the octree-based online 3D volumetric mapping framework UFOMap, for storing non-geometric information and to bridge this gap. By using a general semantic representation with a compact and dynamic data structure, our framework is capable of building large-scale semantic maps in real time. Benchmarks show that this semantic representation has more than an order of magnitude lower memory footprint than other approaches and up to three orders of magnitude faster queries of information. For example, UFOMap can construct truly large-scale volumetric semantic maps in real-time at high resolution. The framework is available as a standalone open source repository at https://github.com/UnknownFreeOccupied/ufomap and integrated with the Robot Operating System (ROS).

Keywords [en]
Mapping, Semantics
National Category
Robotics Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-309202OAI: oai:DiVA.org:kth-309202DiVA, id: diva2:1640131
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)Vinnova, PROSENSE
Note

QC 20220228

Available from: 2022-02-23 Created: 2022-02-23 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping
Open this publication in new window or tab >>Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Flexibel, effektiv och skalbar autonom utforskning och volymetrisk kartläggning
Abstract [en]

Autonomous mobile robots have in recent years started to enter households in the form of autonomous vacuum cleaners and lawn mowers. The applicability of more advanced and general purpose service robots is almost endless. That is, robots that can perform a variety of tasks, instead of being specialized for a single task. To this end, there are some fundamental challenges that need to be addressed. One of the key capabilities of an autonomous mobile robot is navigation. To achieve truly autonomous navigation, the robot has to be able to localize itself, plan, execute, and update a path that takes it to its desired location, and to generate a map on-the-fly of its environment if the environment is unknown or changing. This thesis focuses on the latter two of these challenges, planning and mapping. More specifically, we investigate in the scenario where the robot lacks any prior knowledge of the environment, referred to as autonomous exploration.

One of the most important insights throughout the thesis is that these challenges should not be examined in isolation. As these are generally not the main tasks, a truly autonomous mobile robot shall perform; instead, they are necessities to fulfill higher-level tasks. Therefore, aspects such as flexibility and scalability should be regarded higher than simply accomplishing the task as efficiently or quickly as possible.

Another insight, specifically regarding mapping, comes from surveying both consumers, the ones using the maps, and producers, the ones creating the maps. Ideally, a mapping framework should be optimized towards both, as it is pointless creating maps that cannot be used as well as assuming data can be extracted from a map in ways that are unfeasible. However, in existing works this is rare. 

A third insight, specifically regarding exploration, comes from breaking down typical assumptions and simplifications that are generally applied to make the problem tractable. We show that the problem is often formulated such that it leads to unnecessary greedy behavior, where the expected information gain has too high priority. Not only do we show that with a more general formulation we can achieve better results, but also that the information gain is not important from a long-term perspective.

In this thesis, we present a mapping framework as well as an exploration framework. With these frameworks, we show that flexibility and scalability do not necessarily have to come at the cost of efficiency. We contribute the mapping framework, UFOMap, and the exploration framework, UFOExplorer, open-source to the community such that others can further develop and build upon them.

Abstract [sv]

Autonoma mobila robotar har på senare år börjat komma in i hushållen i form av autonoma dammsugare och gräsklippare. Tillämpbarheten av mer avancerade och generella servicerobotar är nästan oändlig. Det vill säga robotar som kan utföra en mängd olika uppgifter, istället för att vara specialiserade för en enskild uppgift. För detta ändamål finns det några grundläggande utmaningar som måste lösas. En av nyckelfunktionerna hos en autonom mobil robot är navigering. För att uppnå verklig autonom navigering måste roboten kunna lokalisera sig själv, planera, utföra och uppdatera en plan som tar den till dess önskade plats, och generera en karta i farten över sin miljö om miljön är okänd, eller förändras. Denna avhandling fokuserar på de två senare av dessa utmaningar, planering och kartläggning. Närmare bestämt undersöker vi scenariot där roboten saknar förkunskaper om miljön, så kallad autonom utforskning.

En av de viktigaste insikterna genom hela avhandlingen är att dessa utmaningar inte bör granskas isolerat. Eftersom dessa i allmänhet inte är huvuduppgifterna en verklig autonom mobil robot ska utföra; istället är de nödvändigheter för att utföra uppgifter på högre nivå. Därför bör aspekter som flexibilitet och skalbarhet ses som högre än att bara utföra uppgiften så effektivt eller snabbt som möjligt.

En annan insikt, specifikt när det gäller kartläggning, kommer från kart-läggning av både konsumenter, de som använder kartorna, och producenter, de som skapar kartorna. Helst bör ett kartramverk optimeras för båda, eftersom det är meningslöst att skapa kartor som inte kan användas samt att anta att data kan extraheras från en karta på sätt som är omöjliga. I befintligt arbete är detta sällsynt.

En tredje insikt, specifikt angående utforskning, kommer från att bryta ner typiska antaganden och förenklingar som generellt tillämpas för att göra problemet löst. Vi visar att problemet ofta formaliseras så att det leder till onödigt girigt beteende, där den förväntade informationsvinsten har för hög prioritet. Vi visar inte bara att vi med en mer generell formalisering kan nå bättre resultat utan också att informationsvinsten inte är viktig ur ett långsiktigt perspektiv.

I denna avhandling presenterar vi ett kartläggningsramverk samt ett utforskningsramverk. Med dessa ramverk visar vi att flexibilitet och skalbarhet inte nödvändigtvis behöver ske på bekostnad av effektivitet. Vi bidrar med kartläggningsramverket, UFOMap, och utforkninsramverket, UFOExplorer, öppen källkod till samhället så att andra kan utveckla och bygga vidare på dem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 39
Series
TRITA-EECS-AVL ; 2022:14
Keywords
Exploration, Mapping, Autonomous Exploration, Volumetric Mapping
National Category
Robotics
Identifiers
urn:nbn:se:kth:diva-309219 (URN)978-91-8040-144-9 (ISBN)
Public defence
2022-03-18, U1, Brinellvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , FACTSwedish Research Council, Xplore3D
Note

QC 20220224

Available from: 2022-02-24 Created: 2022-02-23 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Duberg, DanielKhoche, AjinkyaJensfelt, Patric

Search in DiVA

By author/editor
Duberg, DanielKhoche, AjinkyaJensfelt, Patric
By organisation
Robotics, Perception and Learning, RPL
RoboticsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1312 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf