kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-4815-9689
2022 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Flexibel, effektiv och skalbar autonom utforskning och volymetrisk kartläggning (Swedish)
Abstract [en]

Autonomous mobile robots have in recent years started to enter households in the form of autonomous vacuum cleaners and lawn mowers. The applicability of more advanced and general purpose service robots is almost endless. That is, robots that can perform a variety of tasks, instead of being specialized for a single task. To this end, there are some fundamental challenges that need to be addressed. One of the key capabilities of an autonomous mobile robot is navigation. To achieve truly autonomous navigation, the robot has to be able to localize itself, plan, execute, and update a path that takes it to its desired location, and to generate a map on-the-fly of its environment if the environment is unknown or changing. This thesis focuses on the latter two of these challenges, planning and mapping. More specifically, we investigate in the scenario where the robot lacks any prior knowledge of the environment, referred to as autonomous exploration.

One of the most important insights throughout the thesis is that these challenges should not be examined in isolation. As these are generally not the main tasks, a truly autonomous mobile robot shall perform; instead, they are necessities to fulfill higher-level tasks. Therefore, aspects such as flexibility and scalability should be regarded higher than simply accomplishing the task as efficiently or quickly as possible.

Another insight, specifically regarding mapping, comes from surveying both consumers, the ones using the maps, and producers, the ones creating the maps. Ideally, a mapping framework should be optimized towards both, as it is pointless creating maps that cannot be used as well as assuming data can be extracted from a map in ways that are unfeasible. However, in existing works this is rare. 

A third insight, specifically regarding exploration, comes from breaking down typical assumptions and simplifications that are generally applied to make the problem tractable. We show that the problem is often formulated such that it leads to unnecessary greedy behavior, where the expected information gain has too high priority. Not only do we show that with a more general formulation we can achieve better results, but also that the information gain is not important from a long-term perspective.

In this thesis, we present a mapping framework as well as an exploration framework. With these frameworks, we show that flexibility and scalability do not necessarily have to come at the cost of efficiency. We contribute the mapping framework, UFOMap, and the exploration framework, UFOExplorer, open-source to the community such that others can further develop and build upon them.

Abstract [sv]

Autonoma mobila robotar har på senare år börjat komma in i hushållen i form av autonoma dammsugare och gräsklippare. Tillämpbarheten av mer avancerade och generella servicerobotar är nästan oändlig. Det vill säga robotar som kan utföra en mängd olika uppgifter, istället för att vara specialiserade för en enskild uppgift. För detta ändamål finns det några grundläggande utmaningar som måste lösas. En av nyckelfunktionerna hos en autonom mobil robot är navigering. För att uppnå verklig autonom navigering måste roboten kunna lokalisera sig själv, planera, utföra och uppdatera en plan som tar den till dess önskade plats, och generera en karta i farten över sin miljö om miljön är okänd, eller förändras. Denna avhandling fokuserar på de två senare av dessa utmaningar, planering och kartläggning. Närmare bestämt undersöker vi scenariot där roboten saknar förkunskaper om miljön, så kallad autonom utforskning.

En av de viktigaste insikterna genom hela avhandlingen är att dessa utmaningar inte bör granskas isolerat. Eftersom dessa i allmänhet inte är huvuduppgifterna en verklig autonom mobil robot ska utföra; istället är de nödvändigheter för att utföra uppgifter på högre nivå. Därför bör aspekter som flexibilitet och skalbarhet ses som högre än att bara utföra uppgiften så effektivt eller snabbt som möjligt.

En annan insikt, specifikt när det gäller kartläggning, kommer från kart-läggning av både konsumenter, de som använder kartorna, och producenter, de som skapar kartorna. Helst bör ett kartramverk optimeras för båda, eftersom det är meningslöst att skapa kartor som inte kan användas samt att anta att data kan extraheras från en karta på sätt som är omöjliga. I befintligt arbete är detta sällsynt.

En tredje insikt, specifikt angående utforskning, kommer från att bryta ner typiska antaganden och förenklingar som generellt tillämpas för att göra problemet löst. Vi visar att problemet ofta formaliseras så att det leder till onödigt girigt beteende, där den förväntade informationsvinsten har för hög prioritet. Vi visar inte bara att vi med en mer generell formalisering kan nå bättre resultat utan också att informationsvinsten inte är viktig ur ett långsiktigt perspektiv.

I denna avhandling presenterar vi ett kartläggningsramverk samt ett utforskningsramverk. Med dessa ramverk visar vi att flexibilitet och skalbarhet inte nödvändigtvis behöver ske på bekostnad av effektivitet. Vi bidrar med kartläggningsramverket, UFOMap, och utforkninsramverket, UFOExplorer, öppen källkod till samhället så att andra kan utveckla och bygga vidare på dem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 39
Series
TRITA-EECS-AVL ; 2022:14
Keywords [en]
Exploration, Mapping, Autonomous Exploration, Volumetric Mapping
National Category
Robotics
Identifiers
URN: urn:nbn:se:kth:diva-309219ISBN: 978-91-8040-144-9 (print)OAI: oai:DiVA.org:kth-309219DiVA, id: diva2:1640162
Public defence
2022-03-18, U1, Brinellvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , FACTSwedish Research Council, Xplore3D
Note

QC 20220224

Available from: 2022-02-24 Created: 2022-02-23 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Efficient Autonomous Exploration Planning of Large-Scale 3-D Environments
Open this publication in new window or tab >>Efficient Autonomous Exploration Planning of Large-Scale 3-D Environments
Show others...
2019 (English)In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 4, no 2, p. 1699-1706Article in journal (Refereed) Published
Abstract [en]

Exploration is an important aspect of robotics, whether it is for mapping, rescue missions, or path planning in an unknown environment. Frontier Exploration planning (FEP) and Receding Horizon Next-Best-View planning (RH-NBVP) are two different approaches with different strengths and weaknesses. FEP explores a large environment consisting of separate regions with ease, but is slow at reaching full exploration due to moving back and forth between regions. RH-NBVP shows great potential and efficiently explores individual regions, but has the disadvantage that it can get stuck in large environments not exploring all regions. In this letter, we present a method that combines both approaches, with FEP as a global exploration planner and RH-NBVP for local exploration. We also present techniques to estimate potential information gain faster, to cache previously estimated gains and to exploit these to efficiently estimate new queries.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2019
Keywords
Search and rescue robots, motion and path planning, mapping
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
urn:nbn:se:kth:diva-246228 (URN)10.1109/LRA.2019.2897343 (DOI)000459538100069 ()2-s2.0-85063311333 (Scopus ID)
Note

QC 20190404

Available from: 2019-04-04 Created: 2019-04-04 Last updated: 2024-01-17Bibliographically approved
2. Guiding Autonomous Exploration with Signal Temporal Logic
Open this publication in new window or tab >>Guiding Autonomous Exploration with Signal Temporal Logic
2019 (English)In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 4, no 4, p. 3332-3339Article in journal (Refereed) Published
Abstract [en]

Algorithms for autonomous robotic exploration usually focus on optimizing time and coverage, often in a greedy fashion. However, obstacle inflation is conservative and might limit mapping capabilities and even prevent the robot from moving through narrow, important places. This letter proposes a method to influence the manner the robot moves in the environment by taking into consideration a user-defined spatial preference formulated in a fragment of signal temporal logic (STL). We propose to guide the motion planning toward minimizing the violation of such preference through a cost function that integrates the quantitative semantics, i.e., robustness of STL. To demonstrate the effectiveness of the proposed approach, we integrate it into the autonomous exploration planner (AEP). Results from simulations and real-world experiments are presented, highlighting the benefits of our approach.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2019
Keywords
Mapping, motion and path planning, formal methods in robotics and automation, search and rescue robots
National Category
Robotics
Identifiers
urn:nbn:se:kth:diva-255721 (URN)10.1109/LRA.2019.2926669 (DOI)000476791300029 ()2-s2.0-85069437912 (Scopus ID)
Note

QC 20190813

Available from: 2019-08-13 Created: 2019-08-13 Last updated: 2024-01-17Bibliographically approved
3. Long-Term Exploration in Unknown Dynamic Environments
Open this publication in new window or tab >>Long-Term Exploration in Unknown Dynamic Environments
2021 (English)In: 2021 7Th International Conference On Automation, Robotics And Applications (Icara 2021), Institute of Electrical and Electronics Engineers (IEEE) , 2021, p. 32-37Conference paper, Published paper (Refereed)
Abstract [en]

The task of exploration does not end when the robot has covered the entire environment. The world is dynamic and to model this property and to keep the map up to date the robot needs to re-explore. In this work, we present an approach to long-term exploration that builds on prior work on dynamic mapping, volumetric representations of space, and exploration planning. The main contribution of our work is a novel formulation of the information gain function that controls the exploration so that it trades off revisiting highly dynamic areas where changes are very likely with covering the rest of the environment to ensure both coverage and up-to-date estimates of the dynamics. We provide experimental validation of our approach in three different simulated environments.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Autonomous exploration, Dynamic environment, Long-term mapping
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-299705 (URN)10.1109/ICARA51699.2021.9376367 (DOI)000668755500007 ()2-s2.0-85103740460 (Scopus ID)
Conference
International Conference on Automation, Robotics and Applications, ICARA 2021, Virtual, Prague, 4 February 2021 - 6 February 2021
Note

QC 20210818

Available from: 2021-08-18 Created: 2021-08-18 Last updated: 2022-06-25Bibliographically approved
4. UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure
Open this publication in new window or tab >>UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure
2022 (English)In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 7, no 2, p. 2487-2494Article in journal (Refereed) Published
Abstract [en]

We propose UFOExplorer, a fast and efficient exploration method that scales well with the environment size. An exploration paradigm driven by map updates is proposed to enable the robot to react quicker and to always move towards the optimal exploration goal. For each map update, a dense graph-based planning structure is updated and extended. The planning structure is then used to generate a path using a simple exploration heuristic, which guides the robot towards the closest exploration goal. The proposed method scales well with the environment size, as the planning cost is amortized when updating and extending the planning structure. The simple exploration heuristic performs on par with the most recent state-of-the-art methods in smaller environments and outperforms them in larger environments, both in terms of exploration speed and computational efficiency. The implementation of the method is made available for future research.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022
Keywords
Notion and path planning, mapping
National Category
Robotics Computer Sciences
Identifiers
urn:nbn:se:kth:diva-308802 (URN)10.1109/LRA.2022.3142923 (DOI)000748371300017 ()2-s2.0-85123278372 (Scopus ID)
Note

QC 20220214

Available from: 2022-02-14 Created: 2022-02-14 Last updated: 2024-01-17Bibliographically approved
5. UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown
Open this publication in new window or tab >>UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown
2020 (English)In: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 5, no 4, p. 6411-6418Article in journal (Refereed) Published
Abstract [en]

3D models are an essential part of many robotic applications. In applications where the environment is unknown a-priori, or where only a part of the environment is known, it is important that the 3D model can handle the unknown space efficiently. Path planning, exploration, and reconstruction all fall into this category. In this letter we present an extension to OctoMap which we call UFOMap. UFOMap uses an explicit representation of all three states in the map, i.e., unknown, free, and occupied. This gives, surprisingly, a more memory efficient representation. We provide methods that allow for significantly faster insertions into the octree. Furthermore, UFOMap supports fast queries based on occupancy state using so called indicators and based on location by exploiting the octree structure and bounding volumes. This enables real-time colored octree mapping at high resolution (below 1 cm). UFOMap is contributed as a C++ library that can be used standalone but is also integrated into ROS.

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2020
Keywords
Mapping, RGB-D perception, motion and path planning
National Category
Computer Sciences
Identifiers
urn:nbn:se:kth:diva-280194 (URN)10.1109/LRA.2020.3013861 (DOI)000560644500008 ()2-s2.0-85089875450 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2024-01-17Bibliographically approved
6. UFOMap: For Consumers and Producers of Stuff and Things in a Tree
Open this publication in new window or tab >>UFOMap: For Consumers and Producers of Stuff and Things in a Tree
(English)Manuscript (preprint) (Other academic)
Abstract [en]

For autonomous robots to have a deeper understanding of their environment, non-geometric, or semantic information, is required. However, there is currently a gap between the producers and consumers of dense semantic maps. Where producers are focused on reconstruction accuracy but not usability. We introduce an efficient semantic extension of the octree-based online 3D volumetric mapping framework UFOMap, for storing non-geometric information and to bridge this gap. By using a general semantic representation with a compact and dynamic data structure, our framework is capable of building large-scale semantic maps in real time. Benchmarks show that this semantic representation has more than an order of magnitude lower memory footprint than other approaches and up to three orders of magnitude faster queries of information. For example, UFOMap can construct truly large-scale volumetric semantic maps in real-time at high resolution. The framework is available as a standalone open source repository at https://github.com/UnknownFreeOccupied/ufomap and integrated with the Robot Operating System (ROS).

Keywords
Mapping, Semantics
National Category
Robotics Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-309202 (URN)
Funder
Wallenberg AI, Autonomous Systems and Software Program (WASP)Vinnova, PROSENSE
Note

QC 20220228

Available from: 2022-02-23 Created: 2022-02-23 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

daniel_duberg_phd_thesis_kappa(4559 kB)459 downloads
File information
File name FULLTEXT01.pdfFile size 4559 kBChecksum SHA-512
a5c9ca4aeb4e599a1bbadeb5bf09215e4a64a3e4a0e088fd9f560b6bcd66d75924fa36e82ba0ce1e7fe3b202ae9ed1b10b5399e158d7043238d71ab9016a719d
Type fulltextMimetype application/pdf

Authority records

Duberg, Daniel

Search in DiVA

By author/editor
Duberg, Daniel
By organisation
Robotics, Perception and Learning, RPL
Robotics

Search outside of DiVA

GoogleGoogle Scholar
Total: 459 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1463 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf