kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Middleware Supporting Data Movement in Complex and Software-Defined Storage and Memory Architectures
HPE HPC AI Res Lab, Basel, Switzerland..
HPE HPC AI Res Lab, Basel, Switzerland..
Swiss Natl Supercomp Ctr, CSCS, CH-6900 Lugano, Switzerland..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC. Forschungszentrum Julich, D-52425 Julich, Germany..ORCID-id: 0000-0001-7296-7817
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: High Performance Computing - ISC High Performance Digital 2021 International Workshops / [ed] Jagode, H Anzt, H Ltaief, H Luszczek, P, Springer Nature , 2021, Vol. 12761, s. 346-357Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Among the broad variety of challenges that arise from workloads in a converged HPC and Cloud infrastructure, data movement is of paramount importance, especially oncoming exascale systems featuring multiple tiers of memory and storage. While the focus has, for years, been primarily on optimizing computations, the importance of improving data handling on such architectures is now well understood. As optimization techniques can be applied at different stages (operating system, run-time system, programming environment, and so on), a middleware providing a uniform and consistent data awareness becomes necessary. In this paper, we introduce a novel memory- and data-aware middleware called Maestro, designed for data orchestration.

Ort, förlag, år, upplaga, sidor
Springer Nature , 2021. Vol. 12761, s. 346-357
Serie
Lecture Notes in Computer Science, ISSN 0302-9743
Nyckelord [en]
HPC and cloud infrastructures, Software-defined infrastructures, Workflows
Nationell ämneskategori
Datavetenskap (datalogi) Datorsystem
Identifikatorer
URN: urn:nbn:se:kth:diva-310656DOI: 10.1007/978-3-030-90539-2_23ISI: 000763168300024Scopus ID: 2-s2.0-85119852965OAI: oai:DiVA.org:kth-310656DiVA, id: diva2:1650170
Konferens
35th International ISC High Performance Conference, JUN 24-JUL 02, 2021, ELECTR NETWORK
Anmärkning

QC 20220406

Tillgänglig från: 2022-04-06 Skapad: 2022-04-06 Senast uppdaterad: 2022-06-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Pleiter, Dirk

Sök vidare i DiVA

Av författaren/redaktören
Pleiter, Dirk
Av organisationen
Parallelldatorcentrum, PDC
Datavetenskap (datalogi)Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf