kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma
KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-2677-8537
KTH, Centres, Science for Life Laboratory, SciLifeLab. Bash Biotech Inc, 600 West Broadway,Suite 700, San Diego, CA 92101 USA..ORCID iD: 0000-0002-8301-9959
Heka Lab, Sk 4 Heka Human Plaza Umraniye, TR-34774 Istanbul, Turkey..
Show others and affiliations
2022 (English)In: Cancers, ISSN 2072-6694, Vol. 14, no 6, article id 1573Article in journal (Refereed) Published
Abstract [en]

Simple Summary Hepatocellular carcinoma (HCC) is the most common malignancy of liver cancer. However, treatment of HCC is still severely limited due to limitation of drug therapy. We aimed to screen more possible target genes and candidate drugs for HCC, exploring the possibility of drug treatments from systems biological perspective. We identified ten candidate target genes, which are hub genes in HCC co-expression networks, which also possess significant prognostic value in two independent HCC cohorts. The rationality of these target genes was well demonstrated through variety analyses of patient expression profiles. We then screened candidate drugs for target genes and finally identified withaferin-a and mitoxantrone as the candidate drug for HCC treatment. The drug effectiveness was validated in in vitro model and computational analysis, providing more evidence for our drug repositioning method and results. Hepatocellular carcinoma (HCC) is a malignant liver cancer that continues to increase deaths worldwide owing to limited therapies and treatments. Computational drug repurposing is a promising strategy to discover potential indications of existing drugs. In this study, we present a systematic drug repositioning method based on comprehensive integration of molecular signatures in liver cancer tissue and cell lines. First, we identify robust prognostic genes and two gene co-expression modules enriched in unfavorable prognostic genes based on two independent HCC cohorts, which showed great consistency in functional and network topology. Then, we screen 10 genes as potential target genes for HCC on the bias of network topology analysis in these two modules. Further, we perform a drug repositioning method by integrating the shRNA and drug perturbation of liver cancer cell lines and identifying potential drugs for every target gene. Finally, we evaluate the effects of the candidate drugs through an in vitro model and observe that two identified drugs inhibited the protein levels of their corresponding target genes and cell migration, also showing great binding affinity in protein docking analysis. Our study demonstrates the usefulness and efficiency of network-based drug repositioning approach to discover potential drugs for cancer treatment and precision medicine approach.

Place, publisher, year, edition, pages
MDPI AG , 2022. Vol. 14, no 6, article id 1573
Keywords [en]
systems biology, co-expression network, survival analysis, drug repositioning, hepatocellular carcinoma (HCC)
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:kth:diva-311001DOI: 10.3390/cancers14061573ISI: 000775815900001PubMedID: 35326724Scopus ID: 2-s2.0-85126527744OAI: oai:DiVA.org:kth-311001DiVA, id: diva2:1652940
Note

QC 20220426

Available from: 2022-04-20 Created: 2022-04-20 Last updated: 2025-05-07Bibliographically approved
In thesis
1. Unraveling the Molecular Mechanisms of Complex Diseases Using Systems Biology Approach
Open this publication in new window or tab >>Unraveling the Molecular Mechanisms of Complex Diseases Using Systems Biology Approach
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the context of rising global health challenges, the mechanistic investigation and

treatment of complex diseases, including cancer, liver diseases, has emerged as a

vital focus in scientific research. A thorough understanding of basic biological

processes is crucial for the development of tools that aid in diagnosing, monitoring,

and treating human diseases. This doctoral thesis investigates the molecular

mechanisms underlying complex human diseases, with an emphasis on discovering

novel therapeutic targets and compounds though systems biology approaches. By

leveraging large-scale transcriptomic data, this work aims to uncover novel insights

into disease biology that can drive drug repositioning and precision medicine. The

thesis integrates various computational strategies and biological frameworks to

connect gene expression patterns with disease progression and therapeutic

opportunities, focusing primarily on cancer and metabolic disorders.

The studies compiled in this thesis contribute to the understanding of human disease

biology through the systematic analysis of gene expression profiles and the

application of network-based methodologies. Paper I introduces the Human

Pathology Atlas, providing an in-depth analysis of gene expression prognostic

features across different cancer types, which improves our understanding of

relationships between gene expression and disease outcomes. Paper II and Paper

III employ gene co-expression network analysis combined with drug repositioning

strategies, identifying promising therapeutic candidates for hepatocellular

carcinoma and pancreatic ductal adenocarcinoma, respectively. These studies

illustrate how network-based approaches can locate key molecular targets and

potential repurposable drugs for various cancer types.

In Paper IV, we apply a network-based approach to investigate the dysregulated

transcriptional regulation in non-alcoholic fatty liver disease (NAFLD). This study

identifies critical genes and pathways involved in the disease progression, providing

new insights into the pathophysiology of NAFLD. Lastly, Paper V presents

comprehensive review on the emerging role of PKLR in liver diseases, highlighting

its connection to metabolic diseases. This review discusses PKLR’s potential as a

therapeutic target, providing a foundation for future studies in metabolic disease

research.

In summary, this thesis contributes to the field of systems biology by integrating

gene expression and network methodologies, offering innovative strategies for

therapeutic development and personalized medicine across complex diseases.

Abstract [sv]

I samband med ökande globala hälsoutmaningar har den mekanistiska

undersökningen och behandlingen av komplexa sjukdomar, inklusive cancer och

leversjukdomar, blivit ett viktigt fokus inom vetenskaplig forskning. En djupgående

förståelse av grundläggande biologiska processer är avgörande för utvecklingen av

verktyg som hjälper till att diagnostisera, övervaka och behandla mänskliga

sjukdomar. Denna doktorsavhandling undersöker de molekylära mekanismerna

bakom komplexa mänskliga sjukdomar, med betoning på att upptäcka nya

terapeutiska mål och substanser genom systembiologiska tillvägagångssätt. Genom

att utnyttja storskaliga transkriptomiska data syftar detta arbete till att avslöja nya

insikter i sjukdomsbiologin som kan driva läkemedelsompositionering och

precisionsmedicin. Avhandlingen integrerar olika beräkningsstrategier och

biologiska ramverk för att koppla genuttrycksmönster till sjukdomsutveckling och

terapeutiska möjligheter, med fokus främst på cancer och metabola sjukdomar.

Studierna som samlats i denna avhandling bidrar avsevärt till förståelsen av

mänsklig sjukdomsbiologi genom systematisk analys av genuttrycksprofiler och

tillämpning av nätverksbaserade metoder. Paper I introducerar Human Pathology

Atlas och ger en djupgående analys av prognostiska genuttrycksdrag i olika

cancertyper, vilket förbättrar vår förståelse av sambanden mellan genuttryck och

sjukdomsutfall. Paper II och Paper III använder genko-

expressionsnätverksanalys kombinerat med läkemedelsompositionering för att

identifiera lovande terapeutiska kandidater för hepatocellulärt karcinom och

pankreatiskt duktalt adenokarcinom. Dessa studier visar hur nätverksbaserade

metoder kan lokalisera viktiga molekylära mål och potentiella återanvändbara

läkemedel för olika cancerformer.

I Paper IV tillämpas ett nätverksbaserat tillvägagångssätt för att undersöka den

dysreglerade transkriptionella regleringen vid icke-alkoholisk fettlever (NAFLD).

Denna studie identifierar kritiska gener och vägar som är involverade i sjukdomens

utveckling och ger nya insikter i NAFLD patofysiologi. Slutligen presenterar Paper

V en omfattande översikt över den framväxande rollen för PKLR i leversjukdomar

och betonar dess koppling till metabola sjukdomar. Denna översikt diskuterar PKLR

potential som ett terapeutiskt mål och ger en grund för framtida studier inom

metabol sjukdomsforskning.

Sammanfattningsvis bidrar denna avhandling till området systembiologi genom att

integrera genuttryck och nätverksmetoder och erbjuda innovativa strategier för

terapeutisk utveckling och personanpassad medicin inom komplexa sjukdomar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 43
Series
TRITA-CBH-FOU ; 2024:41
National Category
Biological Sciences Bioinformatics and Computational Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-354147 (URN)978-91-8106-063-8 (ISBN)
Public defence
2024-10-30, Kollegiesalen, Brinellvägen 6, via Zoom: https://kth-se.zoom.us/j/69004831025, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-10-01

Available from: 2024-10-01 Created: 2024-10-01 Last updated: 2025-02-05Bibliographically approved
2. Systems Biology Approaches for Target Identification and Therapeutic Development in Chronic Diseases: Integrating Bulk and Single-Cell Transcriptomics
Open this publication in new window or tab >>Systems Biology Approaches for Target Identification and Therapeutic Development in Chronic Diseases: Integrating Bulk and Single-Cell Transcriptomics
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Chronic diseases such as metabolic, renal, or liver disorders involve complex interactions of genes, cell types, and tissues. This doctoral thesis leverages systems biology by integrating transcriptomics with other omics data to map biological interactions and identify novel therapeutic targets. By viewing gene perturbations as interconnected networks rather than isolated factors, the research uncovers key drivers of disease and matches them with potential interventions. A combination of bulk and single-cell RNA sequencing is used: bulk RNA-seq provides a broad view of tissue-level changes, while single-cell RNA-seq pinpoints changes in specific cell populations. Together, these approaches enable more precise identification of drug targets for chronic diseases and facilitate drug repositioning to expedite therapy development.The thesis is structured into three key sections. The first part (Paper I) integrates transcriptomic, proteomic and lipidomic data, exploring PKLR as a druggable target of non-alcoholic fatty liver disease (NAFLD). This study investigates whether small-molecule inhibitors of PKLR expression could serve as therapeutic agents, offering a drug repurposing strategy to mitigate disease progression. The second part (Papers II–IV) relies on gene co-expression network, and leverages both bulk and single cell transcriptomics to discover disease-associated molecular drivers of hepatocellular carcinoma (HCC) and chronic kidney disease (CKD), respectively. These studies illustrate how single cell data can locate key molecular targets in diverse cell types within tissues, and help to understand molecular mechanism of these diseases.In the final section (Paper V), a whole-body single-cell gene expression atlas is introduced, providing a foundational reference for human biology. This resource enhances the systems biology toolkit, enabling rapid contextualization of newly identified disease genes and drug targets. Researchers can determine tissue and cell-type specificity, facilitating a clearer understanding of therapeutic strategies for chronic diseases.Overall, this thesis underscores the power of systems biology in deciphering disease mechanisms and advancing precision medicine. The integration of multi-omics data with network analysis fosters a holistic understanding of chronic diseases, leading to effective and targeted treatments. Beyond identifying therapeutic targets, the research contributes a lasting resource in form of the single-cell gene expression atlas, bridging molecular discoveries withIclinical applications. These insights accelerate the development of novel, data- driven therapies for complex diseases, advancing translational medicine.

Abstract [sv]

Kroniska sjukdomar såsom metaboliska, njur och leverpåverkande sådana involverar komplexa interaktioner mellan gener, celltyper och vävnader. Denna doktorsavhandling utnyttjar systembiologi genom att integrera transkriptomik med andra omikdata för att kartlägga biologiska sammanhang och identifiera nya terapeutiska mål. Genom att betrakta genpåverkan som sammanlänkade nätverk snarare än isolerade faktorer avslöjar forskningen viktiga drivkrafter bakom sjukdomar och matchar dem med potentiella interventioner. En kombination av bulk- och enkelcells RNA-sekvensering används: bulk RNA-seq ger en bred överblick av vävnadsnivåförändringar, medan enkelcells RNA-seq fångar förändringar i specifika cellpopulationer. Tillsammans möjliggör dessa metoder en mer exakt identifiering av läkemedelsmål för kroniska sjukdomar och underlättar läkemedelsåteranvändning för att påskynda utvecklingen av nya behandlingarAvhandlingen är uppdelad i trenyckelkapitel. Det första (Paper I) integrerar transkriptomiska, proteomiska och lipidomiska data och undersöker PKLR som ett läkemedelsmål för icke-alkoholrelaterad fettlever (NAFLD). Denna studie undersöker om småmolekylinhibitorer av PKLR-uttryck kan fungera som terapeutiska medel och erbjuda en strategi åt läkemedelsåteranvändning för att bromsa sjukdomens utveckling. Det andra kapitlet (Papers II–IV) baseras på gensamuttrycksnätverk och utnyttjar både bulk- och enkelcells transkriptomik för att upptäcka sjukdomsrelaterade molekylära drivkrafter för hepatocellulärt karcinom (HCC) och kronisk njursjukdom (CKD), respektive. Dessa studier illustrerar hur enskilda celldata kan lokalisera viktiga molekylära mål i olika celltyper inom vävnader och hjälpa till att förstå de molekylära mekanismerna bakom dessa sjukdomar.I det sista kapitlet (Paper V) introduceras en helkroppstäckande, cellupplöst, genuttrycksatlas, vilket ger ett grundläggande referensverk för mänsklig biologi. Denna resurs förbättrar verktygslådan inom systembiologi och möjliggör snabb kontextualisering av nyidentifierade sjukdomsgener och läkemedelsmål. Forskare kan bestämma vävnads- och celltypsspecificitet, vilket underlättar en tydligare förståelse bakom terapeutiska strategier för kroniska sjukdomar.Sammanfattningsvis betonar denna avhandling systembiologins kraft i att förstå sjukdomsmekanismer och driva precisionmedicin framåt. Integreringen av multi-omikdata med nätverksanalys främjar en holistisk förståelse av kroniska sjukdomar, vilket leder till effektiva och målinriktade behandlingar. Förutom att identifiera terapeutiska mål, bidrar forskningen med en varaktig resurs i form av en enkelcellupplöst genuttrycksatlas, som kopplar sammanIIImolekylära upptäckter med kliniska tillämpningar. Dessa insikter påskyndar utvecklingen av nya, datadrivna behandlingar för komplexa sjukdomar och främjar translationell medicin.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 64
Series
TRITA-CBH-FOU ; 2025:17
Keywords
Systems biology, transcriptomics, bulk RNA-seq, single cell RNA-seq, disease target identification, computational drug repositioning, chronic diseases
National Category
Medical Bioinformatics and Systems Biology Cell and Molecular Biology Bioinformatics and Computational Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-363184 (URN)978-91-8106-284-7 (ISBN)
Public defence
2025-06-11, Air & Fire, SciLifeLab, Tomtebodavägen 23A, Solna, via Zoom: https://kth-se.zoom.us/j/63780215294, 13:00 (English)
Opponent
Supervisors
Note

QC 2025-05-07

Available from: 2025-05-07 Created: 2025-05-07 Last updated: 2025-07-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Yuan, MengShong, Ko EunLi, XiangyuShi, MengnanKim, WoongheeShoaie, SaeedUhlén, MathiasZhang, ChengMardinoglu, Adil

Search in DiVA

By author/editor
Yuan, MengShong, Ko EunLi, XiangyuShi, MengnanKim, WoongheeShoaie, SaeedUhlén, MathiasZhang, ChengMardinoglu, Adil
By organisation
Science for Life Laboratory, SciLifeLab
In the same journal
Cancers
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 140 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf